The 2022 Election in the United States: Reliability of a Linear Regression Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00581709" target="_blank" >RIV/67985807:_____/23:00581709 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11220/23:10473340
Výsledek na webu
<a href="https://relik.vse.cz/2023/download/pdf/689-Vidnerova-Petra-paper.pdf" target="_blank" >https://relik.vse.cz/2023/download/pdf/689-Vidnerova-Petra-paper.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The 2022 Election in the United States: Reliability of a Linear Regression Model
Popis výsledku v původním jazyce
In this paper, the 2022 United States election to the House of Representatives is analyzed by means of a linear regression model. After the election process is explained, the popular vote is modeled as a response of 8 predictors (demographic characteristics) on the state-wide level. The main focus is paid to verifying the reliability of two obtained regression models, namely the full model with all predictors and the most relevant submodel found by hypothesis testing (with 4 relevant predictors). Individual topics related to assessing reliability that are used in this study include confidence intervals for predictions, multicollinearity, and also outlier detection. While the predictions in the submodel that includes only relevant predictors are very similar to those in the full model, it turns out that the submodel has better reliability properties compared to the full model, especially in terms of narrower confidence intervals for the values of the popular vote.
Název v anglickém jazyce
The 2022 Election in the United States: Reliability of a Linear Regression Model
Popis výsledku anglicky
In this paper, the 2022 United States election to the House of Representatives is analyzed by means of a linear regression model. After the election process is explained, the popular vote is modeled as a response of 8 predictors (demographic characteristics) on the state-wide level. The main focus is paid to verifying the reliability of two obtained regression models, namely the full model with all predictors and the most relevant submodel found by hypothesis testing (with 4 relevant predictors). Individual topics related to assessing reliability that are used in this study include confidence intervals for predictions, multicollinearity, and also outlier detection. While the predictions in the submodel that includes only relevant predictors are very similar to those in the full model, it turns out that the submodel has better reliability properties compared to the full model, especially in terms of narrower confidence intervals for the values of the popular vote.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RELIK 2023. Conference Proceedings
ISBN
978-80-245-2499-3
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
123-132
Název nakladatele
Prague University of Economics and Business
Místo vydání
Prague
Místo konání akce
Praha
Datum konání akce
23. 11. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—