The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00553129" target="_blank" >RIV/67985807:_____/21:00553129 - isvavai.cz</a>
Výsledek na webu
<a href="https://relik.vse.cz/2021/download/pdf/380-Kalina-Jan-paper.pdf" target="_blank" >https://relik.vse.cz/2021/download/pdf/380-Kalina-Jan-paper.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
Popis výsledku v původním jazyce
The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available prognoses as well as from the presented opinion polls. We perform regression modeling for explaining the election results by means of three demographic predictors for individual 50 states: weekly attendance at religious services, percentage of Afroamerican population, and population density. We compare the performance of beta regression with linear regression, while beta regression performs only slightly better in terms of predicting the response. Because the United States population is very heterogeneous and the regression models are heteroscedastic, we focus on regression quantiles in the linear regression model. Particularly, we develop an original quintile regression map, such graphical visualization allows to perform an interesting interpretation of the effect of the demographic predictors on the election outcome on the level of individual states.
Název v anglickém jazyce
The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
Popis výsledku anglicky
The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available prognoses as well as from the presented opinion polls. We perform regression modeling for explaining the election results by means of three demographic predictors for individual 50 states: weekly attendance at religious services, percentage of Afroamerican population, and population density. We compare the performance of beta regression with linear regression, while beta regression performs only slightly better in terms of predicting the response. Because the United States population is very heterogeneous and the regression models are heteroscedastic, we focus on regression quantiles in the linear regression model. Particularly, we develop an original quintile regression map, such graphical visualization allows to perform an interesting interpretation of the effect of the demographic predictors on the election outcome on the level of individual states.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50601 - Political science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RELIK 2021. Conference Proceedings
ISBN
978-80-245-2429-0
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
321-331
Název nakladatele
Prague University of Economics and Business
Místo vydání
Prague
Místo konání akce
Praha
Datum konání akce
4. 11. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—