Knowledge Base Creation, Enrichment and Repair
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00221738" target="_blank" >RIV/68407700:21240/14:00221738 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-09846-3_3" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-09846-3_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-09846-3_3" target="_blank" >10.1007/978-3-319-09846-3_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge Base Creation, Enrichment and Repair
Popis výsledku v původním jazyce
This chapter focuses on data transformation to RDF and Linked Data and furthermore on the improvement of existing or extracted data especially with respect to schema enrichment and ontology repair. Tasks concerning the triplification of data are mainly grounded on existing and well-proven techniques and were refined during the lifetime of the LOD2 project and integrated into the LOD2 Stack. Triplification of legacy data, i.e. data not yet in RDF, represents the entry point for legacy systems to participate in the LOD cloud. While existing systems are often very useful and successful, there are notable differences between the ways knowledge bases and Wikis or databases are created and used. One of the key differences in content is in the importance and use of schematic information in knowledge bases. This information is usually absent in the source system and therefore also in many LOD knowledge bases. However, schema information is needed for consistency checking and finding modelling problems. We will present a combination of enrichment and repair steps to tackle this problem based on previous research in machine learning and knowledge representation. Overall, the Chapter describes how to enable tool-supported creation and publishing of RDF as Linked Data (Sect. 1) and how to increase the quality and value of such large knowledge bases when published on the Web (Sect. 2).
Název v anglickém jazyce
Knowledge Base Creation, Enrichment and Repair
Popis výsledku anglicky
This chapter focuses on data transformation to RDF and Linked Data and furthermore on the improvement of existing or extracted data especially with respect to schema enrichment and ontology repair. Tasks concerning the triplification of data are mainly grounded on existing and well-proven techniques and were refined during the lifetime of the LOD2 project and integrated into the LOD2 Stack. Triplification of legacy data, i.e. data not yet in RDF, represents the entry point for legacy systems to participate in the LOD cloud. While existing systems are often very useful and successful, there are notable differences between the ways knowledge bases and Wikis or databases are created and used. One of the key differences in content is in the importance and use of schematic information in knowledge bases. This information is usually absent in the source system and therefore also in many LOD knowledge bases. However, schema information is needed for consistency checking and finding modelling problems. We will present a combination of enrichment and repair steps to tackle this problem based on previous research in machine learning and knowledge representation. Overall, the Chapter describes how to enable tool-supported creation and publishing of RDF as Linked Data (Sect. 1) and how to increase the quality and value of such large knowledge bases when published on the Web (Sect. 2).
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Linked Open Data -- Creating Knowledge Out of Interlinked Data
ISBN
978-3-319-09845-6
Počet stran výsledku
25
Strana od-do
45-69
Počet stran knihy
218
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Kód UT WoS kapitoly
—