Distributed Evaluation of XPath Axes Queries over Large XML Documents Stored in MapReduce Clusters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00224323" target="_blank" >RIV/68407700:21240/14:00224323 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/14:00221194
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6974858" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6974858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DEXA.2014.59" target="_blank" >10.1109/DEXA.2014.59</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distributed Evaluation of XPath Axes Queries over Large XML Documents Stored in MapReduce Clusters
Popis výsledku v původním jazyce
The MR (MapReduce) framework, a programming model for parallel computation over data stored in a cluster of commodity computers, established itself as one of the leading solutions for Big Data processing. This framework is also being used like a query language in many database systems, because it can process data stored in various unstructured, semi-structured, and structured formats. Nevertheless, the MR framework can be used for XML data processing too, it does not allow to write queries in a declarative manner, like XPath or XQuery. To overcome this problem, we propose a system that enables to query XML data with XPath, but it evaluates the queries in parallel using the MR framework. First, we introduce a persistent storage that maps XML data into awide-column store. The proposed mapping enables efficient and distributed data processing. Secondly, we describe a query processor translating an XPath language subset to MR jobs. Finally, we present tests and their results showing the s
Název v anglickém jazyce
Distributed Evaluation of XPath Axes Queries over Large XML Documents Stored in MapReduce Clusters
Popis výsledku anglicky
The MR (MapReduce) framework, a programming model for parallel computation over data stored in a cluster of commodity computers, established itself as one of the leading solutions for Big Data processing. This framework is also being used like a query language in many database systems, because it can process data stored in various unstructured, semi-structured, and structured formats. Nevertheless, the MR framework can be used for XML data processing too, it does not allow to write queries in a declarative manner, like XPath or XQuery. To overcome this problem, we propose a system that enables to query XML data with XPath, but it evaluates the queries in parallel using the MR framework. First, we introduce a persistent storage that maps XML data into awide-column store. The proposed mapping enables efficient and distributed data processing. Secondly, we describe a query processor translating an XPath language subset to MR jobs. Finally, we present tests and their results showing the s
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Database and Expert Systems Applications (DEXA), 2014 25th International Workshop on
ISBN
978-1-4799-5722-4
ISSN
1529-4188
e-ISSN
—
Počet stran výsledku
5
Strana od-do
253-257
Název nakladatele
IEEE Computer Soc.
Místo vydání
Los Alamitos, CA
Místo konání akce
Munich
Datum konání akce
1. 9. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—