Building Predictive Models in Two Stages with Meta-Learning Templates optimized by Genetic Programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00224815" target="_blank" >RIV/68407700:21240/14:00224815 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CIEL.2014.7015740" target="_blank" >http://dx.doi.org/10.1109/CIEL.2014.7015740</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CIEL.2014.7015740" target="_blank" >10.1109/CIEL.2014.7015740</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Building Predictive Models in Two Stages with Meta-Learning Templates optimized by Genetic Programming
Popis výsledku v původním jazyce
The model selection stage is one of the most difficult in predictive modeling. To select a model with a highest generalization performance involves benchmarking huge number of candidate models or algorithms. Often, a final model is selected without considering potentially high quality candidates just because there are too many possibilities. Improper benchmarking methodology often leads to biased estimates of model generalization performance. Automation of the model selection stage is possible, howeverthe computational complexity is huge especially when ensembles of models and optimization of input features should be also considered. In this paper we show, how to automate model selection process in a way that allows to search for complex hierarchies of ensemble models while maintaining computational tractability. We introduce two-stage learning, meta-learning templates optimized by evolutionary programming with anytime properties to be able to deliver and maintain data-tailored algori
Název v anglickém jazyce
Building Predictive Models in Two Stages with Meta-Learning Templates optimized by Genetic Programming
Popis výsledku anglicky
The model selection stage is one of the most difficult in predictive modeling. To select a model with a highest generalization performance involves benchmarking huge number of candidate models or algorithms. Often, a final model is selected without considering potentially high quality candidates just because there are too many possibilities. Improper benchmarking methodology often leads to biased estimates of model generalization performance. Automation of the model selection stage is possible, howeverthe computational complexity is huge especially when ensembles of models and optimization of input features should be also considered. In this paper we show, how to automate model selection process in a way that allows to search for complex hierarchies of ensemble models while maintaining computational tractability. We introduce two-stage learning, meta-learning templates optimized by evolutionary programming with anytime properties to be able to deliver and maintain data-tailored algori
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL) Proceedings
ISBN
978-1-4799-4513-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
27-34
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Orlando
Datum konání akce
9. 12. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—