Morphic images of episturmian words having finite palindromic defect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00230715" target="_blank" >RIV/68407700:21240/16:00230715 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ejc.2015.07.001" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2015.07.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2015.07.001" target="_blank" >10.1016/j.ejc.2015.07.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Morphic images of episturmian words having finite palindromic defect
Popis výsledku v původním jazyce
We study morphisms from certain classes and their action on episturmian words.The first class is $P_{ret}$. In general, a morphism of class $P_{ret}$ can map an infinite word having zero palindromic defect to a word having infinite palindromic defect. We show that the image of an episturmian word, which has zero palindromic defect, under a morphism of class $P_{ret}$ has always its palindromic defect finite. We also focus on letter-to-letter morphisms to binary alphabet: we show that images of ternary episturmian words under such morphisms have zero palindromic defect. These results contribute to the study of an unsolved question of characterization of morphisms that preserve finite, or even zero, palindromic defect. They also enable us to construct new examples of binary words having zero or finite $H$-palindromic defect, where $H = {{rm Id}, R, E, RE }$ is the group generated by both involutory antimorphisms on a binary alphabet.
Název v anglickém jazyce
Morphic images of episturmian words having finite palindromic defect
Popis výsledku anglicky
We study morphisms from certain classes and their action on episturmian words.The first class is $P_{ret}$. In general, a morphism of class $P_{ret}$ can map an infinite word having zero palindromic defect to a word having infinite palindromic defect. We show that the image of an episturmian word, which has zero palindromic defect, under a morphism of class $P_{ret}$ has always its palindromic defect finite. We also focus on letter-to-letter morphisms to binary alphabet: we show that images of ternary episturmian words under such morphisms have zero palindromic defect. These results contribute to the study of an unsolved question of characterization of morphisms that preserve finite, or even zero, palindromic defect. They also enable us to construct new examples of binary words having zero or finite $H$-palindromic defect, where $H = {{rm Id}, R, E, RE }$ is the group generated by both involutory antimorphisms on a binary alphabet.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP13-35273P" target="_blank" >GP13-35273P: Algoritmy pro cirkulární morfismy a jejich pevné body</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
359-371
Kód UT WoS článku
000362144400028
EID výsledku v databázi Scopus
2-s2.0-84937231453