Towards Efficient Positional Inverted Index
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00307711" target="_blank" >RIV/68407700:21240/17:00307711 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/1999-4893/10/1/30" target="_blank" >http://www.mdpi.com/1999-4893/10/1/30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/a10010030" target="_blank" >10.3390/a10010030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Efficient Positional Inverted Index
Popis výsledku v původním jazyce
We address the problem of positional indexing in the natural language domain. The positional inverted index contains the information of the word positions. Thus, it is able to recover the original text file, which implies that it is not necessary to store the original file. Our Positional Inverted Self-Index (PISI) stores the word position gaps encoded by variable byte code. Inverted lists of single terms are combined into one inverted list that represents the backbone of the text file since it stores the sequence of the indexed words of the original file. The inverted list is synchronized with a presentation layer that stores separators, stop words, as well as variants of the indexed words. The Huffman coding is used to encode the presentation layer. The space complexity of the PISI inverted list is O((N-n)[log2bN]+([N-nα]+n)x([log2bn]+1)) where N is a number of stems, n is a number of unique stems, α is a step/period of the back pointers in the inverted list and b is the size of the word of computer memory given in bits. The space complexity of the presentation layer is O(-∑Ni=1[log2pn(i)i]-∑N'j=1[log2p'j]+N) with respect to pn(i)i as a probability of a stem variant at position i, p'j as the probability of separator or stop word at position j and N' as the number of separators and stop words
Název v anglickém jazyce
Towards Efficient Positional Inverted Index
Popis výsledku anglicky
We address the problem of positional indexing in the natural language domain. The positional inverted index contains the information of the word positions. Thus, it is able to recover the original text file, which implies that it is not necessary to store the original file. Our Positional Inverted Self-Index (PISI) stores the word position gaps encoded by variable byte code. Inverted lists of single terms are combined into one inverted list that represents the backbone of the text file since it stores the sequence of the indexed words of the original file. The inverted list is synchronized with a presentation layer that stores separators, stop words, as well as variants of the indexed words. The Huffman coding is used to encode the presentation layer. The space complexity of the PISI inverted list is O((N-n)[log2bN]+([N-nα]+n)x([log2bn]+1)) where N is a number of stems, n is a number of unique stems, α is a step/period of the back pointers in the inverted list and b is the size of the word of computer memory given in bits. The space complexity of the presentation layer is O(-∑Ni=1[log2pn(i)i]-∑N'j=1[log2p'j]+N) with respect to pn(i)i as a probability of a stem variant at position i, p'j as the probability of separator or stop word at position j and N' as the number of separators and stop words
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithms
ISSN
1999-4893
e-ISSN
1999-4893
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000398723600029
EID výsledku v databázi Scopus
2-s2.0-85018343597