Existence, Consistency and Computer Simulation for Selected Variants of Minimum Distance Estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00316345" target="_blank" >RIV/68407700:21240/18:00316345 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/18:00316345
Výsledek na webu
<a href="http://dx.doi.org/10.14736/kyb-2018-2-0336" target="_blank" >http://dx.doi.org/10.14736/kyb-2018-2-0336</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2018-2-0336" target="_blank" >10.14736/kyb-2018-2-0336</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Existence, Consistency and Computer Simulation for Selected Variants of Minimum Distance Estimators
Popis výsledku v původním jazyce
The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function $f_0$ on the real line. It shows that the AMDE always exists when the bounded $phi$-divergence, Kolmogorov, L'evy, Cram'er, or discrepancy distance is used. Consequently, $n^{-1/2}$ consistency rate in any bounded $phi$-divergence is established for Kolmogorov, L'evy, and discrepancy estimators under the condition that the degree of variations of the corresponding family of densities is finite. A simulation experiment empirically studies the performance of the approximate minimum Kolmogorov estimator (AMKE) and some histogram-based variants of approximate minimum divergence estimators, like power type and Le,Cam, under six distributions (Uniform, Normal, Logistic, Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum likelihood/median) is provided for sample sizes $n=10,20,50,120,250$. The simulation analyzes the behaviour of estimators through different families of distributions. It is shown that the performance of AMKE differs from the other estimators with respect to family type and that the AMKE estimators cope more easily with the Cauchy distribution than standard or divergence based estimators, especially for small sample sizes.
Název v anglickém jazyce
Existence, Consistency and Computer Simulation for Selected Variants of Minimum Distance Estimators
Popis výsledku anglicky
The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function $f_0$ on the real line. It shows that the AMDE always exists when the bounded $phi$-divergence, Kolmogorov, L'evy, Cram'er, or discrepancy distance is used. Consequently, $n^{-1/2}$ consistency rate in any bounded $phi$-divergence is established for Kolmogorov, L'evy, and discrepancy estimators under the condition that the degree of variations of the corresponding family of densities is finite. A simulation experiment empirically studies the performance of the approximate minimum Kolmogorov estimator (AMKE) and some histogram-based variants of approximate minimum divergence estimators, like power type and Le,Cam, under six distributions (Uniform, Normal, Logistic, Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum likelihood/median) is provided for sample sizes $n=10,20,50,120,250$. The simulation analyzes the behaviour of estimators through different families of distributions. It is shown that the performance of AMKE differs from the other estimators with respect to family type and that the AMKE estimators cope more easily with the Cauchy distribution than standard or divergence based estimators, especially for small sample sizes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
336-350
Kód UT WoS článku
000435168400008
EID výsledku v databázi Scopus
2-s2.0-85047380840