Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Do We Need to Observe Features to Perform Feature Selection?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00323850" target="_blank" >RIV/68407700:21240/18:00323850 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Do We Need to Observe Features to Perform Feature Selection?

  • Popis výsledku v původním jazyce

    Many feature selection methods were developed in the past, but in the core, they all work the same way — you pass a set of features to the algorithm and get a reduced set of the features. But can we perform a non-trivial feature selection without first observing the features? This is an important question because if we were actually able to predict feature importance before observing the features, we would reduce computation requirements of all stages of machine learning process beginning with feature engineering. In this article, we argue that it is possible to predict feature importance before feature vector observation. The trick is that we use meta-features about the features to perform the feature selection. We evaluate the concept on 15 relational databases. On average, it was enough to generate the top decile of all features to get the same model accuracy as if we generated all features and passed them to the model.

  • Název v anglickém jazyce

    Do We Need to Observe Features to Perform Feature Selection?

  • Popis výsledku anglicky

    Many feature selection methods were developed in the past, but in the core, they all work the same way — you pass a set of features to the algorithm and get a reduced set of the features. But can we perform a non-trivial feature selection without first observing the features? This is an important question because if we were actually able to predict feature importance before observing the features, we would reduce computation requirements of all stages of machine learning process beginning with feature engineering. In this article, we argue that it is possible to predict feature importance before feature vector observation. The trick is that we use meta-features about the features to perform the feature selection. We evaluate the concept on 15 relational databases. On average, it was enough to generate the top decile of all features to get the same model accuracy as if we generated all features and passed them to the model.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 18th Conference Information Technologies - Applications and Theory (ITAT 2018)

  • ISBN

    9781727267198

  • ISSN

  • e-ISSN

    1613-0073

  • Počet stran výsledku

    8

  • Strana od-do

    44-51

  • Název nakladatele

    CEUR Workshop Proceedings

  • Místo vydání

    Aachen

  • Místo konání akce

    Krompachy

  • Datum konání akce

    21. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku