Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparing rule mining approaches for classification with reasoning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00324715" target="_blank" >RIV/68407700:21240/18:00324715 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparing rule mining approaches for classification with reasoning

  • Popis výsledku v původním jazyce

    Classification serves an important role in domains such as network security or health care. Although these domains require understanding of the classifier’s decision, there are only a few classification methods trying to justify or explain their results. Classification rules and decision trees are generally considered comprehensible. Therefore, this study compares the classification performance and comprehensibility of a random forest classifier with classification rules extracted by Frequent Item Set Mining, Logical Item Set Mining and by the Explainer algorithm, which was previously proposed by the authors.

  • Název v anglickém jazyce

    Comparing rule mining approaches for classification with reasoning

  • Popis výsledku anglicky

    Classification serves an important role in domains such as network security or health care. Although these domains require understanding of the classifier’s decision, there are only a few classification methods trying to justify or explain their results. Classification rules and decision trees are generally considered comprehensible. Therefore, this study compares the classification performance and comprehensibility of a random forest classifier with classification rules extracted by Frequent Item Set Mining, Logical Item Set Mining and by the Explainer algorithm, which was previously proposed by the authors.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 18th Conference Information Technologies - Applications and Theory (ITAT 2018)

  • ISBN

    9781727267198

  • ISSN

  • e-ISSN

    1613-0073

  • Počet stran výsledku

    7

  • Strana od-do

    52-58

  • Název nakladatele

    CEUR Workshop Proceedings

  • Místo vydání

    Aachen

  • Místo konání akce

    Krompachy

  • Datum konání akce

    21. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku