Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00337770" target="_blank" >RIV/68407700:21240/19:00337770 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2019.44" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ISAAC.2019.44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2019.44" target="_blank" >10.4230/LIPIcs.ISAAC.2019.44</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters
Popis výsledku v původním jazyce
We continue and extend previous work on the parameterized complexity analysis of the NP-hard Stable Roommates with Ties and Incomplete Lists problem, thereby strengthening earlier results both on the side of parameterized hardness as well as on the side of fixed-parameter tractability. Other than for its famous sister problem Stable Marriage which focuses on a bipartite scenario, Stable Roommates with Incomplete Lists allows for arbitrary acceptability graphs whose edges specify the possible matchings of each two agents (agents are represented by graph vertices). Herein, incomplete lists and ties reflect the fact that in realistic application scenarios the agents cannot bring all other agents into a linear order. Among our main contributions is to show that it is W[1]-hard to compute a maximum-cardinality stable matching for acceptability graphs of bounded treedepth, bounded tree-cut width, and bounded feedback vertex number (these are each time the respective parameters). However, if we `only' ask for perfect stable matchings or the mere existence of a stable matching, then we obtain fixed-parameter tractability with respect to tree-cut width but not with respect to treedepth. On the positive side, we also provide fixed-parameter tractability results for the parameter feedback edge set number.
Název v anglickém jazyce
Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters
Popis výsledku anglicky
We continue and extend previous work on the parameterized complexity analysis of the NP-hard Stable Roommates with Ties and Incomplete Lists problem, thereby strengthening earlier results both on the side of parameterized hardness as well as on the side of fixed-parameter tractability. Other than for its famous sister problem Stable Marriage which focuses on a bipartite scenario, Stable Roommates with Incomplete Lists allows for arbitrary acceptability graphs whose edges specify the possible matchings of each two agents (agents are represented by graph vertices). Herein, incomplete lists and ties reflect the fact that in realistic application scenarios the agents cannot bring all other agents into a linear order. Among our main contributions is to show that it is W[1]-hard to compute a maximum-cardinality stable matching for acceptability graphs of bounded treedepth, bounded tree-cut width, and bounded feedback vertex number (these are each time the respective parameters). However, if we `only' ask for perfect stable matchings or the mere existence of a stable matching, then we obtain fixed-parameter tractability with respect to tree-cut width but not with respect to treedepth. On the positive side, we also provide fixed-parameter tractability results for the parameter feedback edge set number.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
30th International Symposium on Algorithms and Computation (ISAAC 2019)
ISBN
978-3-95977-130-6
ISSN
—
e-ISSN
1868-8969
Počet stran výsledku
14
Strana od-do
"44:1"-"44:14"
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Shanghai
Datum konání akce
9. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—