Multidimensional Stable Roommates with Master List
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00345575" target="_blank" >RIV/68407700:21240/20:00345575 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-64946-3_5" target="_blank" >https://doi.org/10.1007/978-3-030-64946-3_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-64946-3_5" target="_blank" >10.1007/978-3-030-64946-3_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multidimensional Stable Roommates with Master List
Popis výsledku v původním jazyce
Since the early days of research in algorithms and complexity, the computation of stable matchings is a core topic. While in the classic setting the goal is to match up two agents (either from different “gender” (this is Stable Marriage) or “unrestricted” (this is Stable Roommates)), Knuth [1976] triggered the study of three- or multidimensional cases. Here, we focus on the study of Multidimensional Stable Roommates, known to be ???????? -hard since the early 1990’s. Many ???????? -hardness results, however, rely on very general input instances that do not occur in at least some of the specific application scenarios. With the quest for identifying islands of tractability, we look at the case of master lists. Here, as natural in applications where agents express their preferences based on “objective” scores, one roughly speaking assumes that all agent preferences are “derived from” a central master list, implying that the individual agent preferences shall be similar. Master lists have been frequently studied in the two-dimensional (classic) stable matching case, but seemingly almost never for the multidimensional case. This work, also relying on methods from parameterized algorithm design and complexity analysis, performs a first systematic study of Multidimensional Stable Roommates under the assumption of master lists.
Název v anglickém jazyce
Multidimensional Stable Roommates with Master List
Popis výsledku anglicky
Since the early days of research in algorithms and complexity, the computation of stable matchings is a core topic. While in the classic setting the goal is to match up two agents (either from different “gender” (this is Stable Marriage) or “unrestricted” (this is Stable Roommates)), Knuth [1976] triggered the study of three- or multidimensional cases. Here, we focus on the study of Multidimensional Stable Roommates, known to be ???????? -hard since the early 1990’s. Many ???????? -hardness results, however, rely on very general input instances that do not occur in at least some of the specific application scenarios. With the quest for identifying islands of tractability, we look at the case of master lists. Here, as natural in applications where agents express their preferences based on “objective” scores, one roughly speaking assumes that all agent preferences are “derived from” a central master list, implying that the individual agent preferences shall be similar. Master lists have been frequently studied in the two-dimensional (classic) stable matching case, but seemingly almost never for the multidimensional case. This work, also relying on methods from parameterized algorithm design and complexity analysis, performs a first systematic study of Multidimensional Stable Roommates under the assumption of master lists.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Web and Internet Economics - 16th International Conference, WINE 2020, Beijing, China, December 7-11, 2020, Proceedings
ISBN
978-3-030-64945-6
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
59-73
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Beijing
Datum konání akce
7. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—