Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unsupervised Construction of Task-Specific Datasets for Object Re-identification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350725" target="_blank" >RIV/68407700:21240/21:00350725 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/21:00548651

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3477911.3477922" target="_blank" >https://doi.org/10.1145/3477911.3477922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3477911.3477922" target="_blank" >10.1145/3477911.3477922</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Construction of Task-Specific Datasets for Object Re-identification

  • Popis výsledku v původním jazyce

    In the last decade, we have seen a significant uprise of deep neural networks in image processing tasks and many other research areas. However, while various neural architectures have successfully solved numerous tasks, they constantly demand more and more processing time and training data. Moreover, the current trend of using existing pre-trained architectures just as backbones and attaching new processing branches on top not only increases this demand but diminishes the explainability of the whole model. Our research focuses on combinations of explainable building blocks for the image processing tasks, such as object tracking. We propose a combination of Mask R-CNN, state-of-the-art object detection and segmentation neural network, with our previously published method of sparse feature tracking. Such a combination allows us to track objects by connecting detected masks using the proposed sparse feature tracklets. However, this method cannot recover from complete object occlusions and has to be assisted by an object re-identification. To this end, this paper uses our feature tracking method for a slightly different task: an unsupervised extraction of object representations that we can directly use to fine-tune an object re-identification algorithm. As we have to use objects masks already in the object tracking, our approach utilises the additional information as an alpha channel of the object representations, which further increases the precision of the re-identification. An additional benefit is that our fine-tuning method can be employed even in a fully online scenario.

  • Název v anglickém jazyce

    Unsupervised Construction of Task-Specific Datasets for Object Re-identification

  • Popis výsledku anglicky

    In the last decade, we have seen a significant uprise of deep neural networks in image processing tasks and many other research areas. However, while various neural architectures have successfully solved numerous tasks, they constantly demand more and more processing time and training data. Moreover, the current trend of using existing pre-trained architectures just as backbones and attaching new processing branches on top not only increases this demand but diminishes the explainability of the whole model. Our research focuses on combinations of explainable building blocks for the image processing tasks, such as object tracking. We propose a combination of Mask R-CNN, state-of-the-art object detection and segmentation neural network, with our previously published method of sparse feature tracking. Such a combination allows us to track objects by connecting detected masks using the proposed sparse feature tracklets. However, this method cannot recover from complete object occlusions and has to be assisted by an object re-identification. To this end, this paper uses our feature tracking method for a slightly different task: an unsupervised extraction of object representations that we can directly use to fine-tune an object re-identification algorithm. As we have to use objects masks already in the object tracking, our approach utilises the additional information as an alpha channel of the object representations, which further increases the precision of the re-identification. An additional benefit is that our fine-tuning method can be employed even in a fully online scenario.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICCTA 2021 Conference Proceedings

  • ISBN

    978-1-4503-9052-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    66-72

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    New York

  • Místo konání akce

    Vídeň

  • Datum konání akce

    13. 7. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku