Unsupervised Construction of Task-Specific Datasets for Object Re-identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350725" target="_blank" >RIV/68407700:21240/21:00350725 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/21:00548651
Výsledek na webu
<a href="https://doi.org/10.1145/3477911.3477922" target="_blank" >https://doi.org/10.1145/3477911.3477922</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3477911.3477922" target="_blank" >10.1145/3477911.3477922</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised Construction of Task-Specific Datasets for Object Re-identification
Popis výsledku v původním jazyce
In the last decade, we have seen a significant uprise of deep neural networks in image processing tasks and many other research areas. However, while various neural architectures have successfully solved numerous tasks, they constantly demand more and more processing time and training data. Moreover, the current trend of using existing pre-trained architectures just as backbones and attaching new processing branches on top not only increases this demand but diminishes the explainability of the whole model. Our research focuses on combinations of explainable building blocks for the image processing tasks, such as object tracking. We propose a combination of Mask R-CNN, state-of-the-art object detection and segmentation neural network, with our previously published method of sparse feature tracking. Such a combination allows us to track objects by connecting detected masks using the proposed sparse feature tracklets. However, this method cannot recover from complete object occlusions and has to be assisted by an object re-identification. To this end, this paper uses our feature tracking method for a slightly different task: an unsupervised extraction of object representations that we can directly use to fine-tune an object re-identification algorithm. As we have to use objects masks already in the object tracking, our approach utilises the additional information as an alpha channel of the object representations, which further increases the precision of the re-identification. An additional benefit is that our fine-tuning method can be employed even in a fully online scenario.
Název v anglickém jazyce
Unsupervised Construction of Task-Specific Datasets for Object Re-identification
Popis výsledku anglicky
In the last decade, we have seen a significant uprise of deep neural networks in image processing tasks and many other research areas. However, while various neural architectures have successfully solved numerous tasks, they constantly demand more and more processing time and training data. Moreover, the current trend of using existing pre-trained architectures just as backbones and attaching new processing branches on top not only increases this demand but diminishes the explainability of the whole model. Our research focuses on combinations of explainable building blocks for the image processing tasks, such as object tracking. We propose a combination of Mask R-CNN, state-of-the-art object detection and segmentation neural network, with our previously published method of sparse feature tracking. Such a combination allows us to track objects by connecting detected masks using the proposed sparse feature tracklets. However, this method cannot recover from complete object occlusions and has to be assisted by an object re-identification. To this end, this paper uses our feature tracking method for a slightly different task: an unsupervised extraction of object representations that we can directly use to fine-tune an object re-identification algorithm. As we have to use objects masks already in the object tracking, our approach utilises the additional information as an alpha channel of the object representations, which further increases the precision of the re-identification. An additional benefit is that our fine-tuning method can be employed even in a fully online scenario.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCTA 2021 Conference Proceedings
ISBN
978-1-4503-9052-1
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
66-72
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Vídeň
Datum konání akce
13. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—