Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experimental investigation of neural and Weisfeiler-Lehman-Kernel graph representations for downstream SVM-based classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00382640" target="_blank" >RIV/68407700:21240/21:00382640 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/21:00546251 RIV/68407700:21340/21:00382640

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experimental investigation of neural and Weisfeiler-Lehman-Kernel graph representations for downstream SVM-based classification

  • Popis výsledku v původním jazyce

    Graphs are one of the most ubiquitous kinds of data. However, data analysis methods have been developed primarily for numerical data, and to make use of them, graphs need to be represented as elements of some Euclidean space. An increasingly popular way of representing them in this way are graph neural networks (GNNs). Because data analysis applications typically require identical results for isomorphic graphs, the representations learned by GNNs also need to be invariant with respect to graph isomorphism. That motivated recent research into the possibilities of recognizing nonisomorphic pairs of graphs by GNNs, primarily based on the Weisfeiler-Lehman (WL) isomorphism test. This paper reports the results of a first experimental comparison of four variants of two important GNNs based on the WL test from the point of view of graph representation for downstream classification by means of a support vector machins (SVM). Those methods are compared not only with each other, but also with a recent generalization of the WL subtree kernel. For all GNN variants, two different representations are included in the comparison. The comparison revealed that the four considered representations of the same kind of GNN never significantly differ. On the other hand, there was always a statistically significant difference between representations originating from different kinds of GNNs, as well as between any representation originating from any of the considered GNNs and the representation originating from the generalized WL kernel.

  • Název v anglickém jazyce

    Experimental investigation of neural and Weisfeiler-Lehman-Kernel graph representations for downstream SVM-based classification

  • Popis výsledku anglicky

    Graphs are one of the most ubiquitous kinds of data. However, data analysis methods have been developed primarily for numerical data, and to make use of them, graphs need to be represented as elements of some Euclidean space. An increasingly popular way of representing them in this way are graph neural networks (GNNs). Because data analysis applications typically require identical results for isomorphic graphs, the representations learned by GNNs also need to be invariant with respect to graph isomorphism. That motivated recent research into the possibilities of recognizing nonisomorphic pairs of graphs by GNNs, primarily based on the Weisfeiler-Lehman (WL) isomorphism test. This paper reports the results of a first experimental comparison of four variants of two important GNNs based on the WL test from the point of view of graph representation for downstream classification by means of a support vector machins (SVM). Those methods are compared not only with each other, but also with a recent generalization of the WL subtree kernel. For all GNN variants, two different representations are included in the comparison. The comparison revealed that the four considered representations of the same kind of GNN never significantly differ. On the other hand, there was always a statistically significant difference between representations originating from different kinds of GNNs, as well as between any representation originating from any of the considered GNNs and the representation originating from the generalized WL kernel.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 21st Conference Information Technologies – Applications and Theory (ITAT 2021)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Počet stran výsledku

    10

  • Strana od-do

    130-139

  • Název nakladatele

    CEUR Workshop Proceedings

  • Místo vydání

    Aachen

  • Místo konání akce

    Heľpa

  • Datum konání akce

    24. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku