Multi-agent pathfinding with continuous time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00357053" target="_blank" >RIV/68407700:21240/22:00357053 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.artint.2022.103662" target="_blank" >https://doi.org/10.1016/j.artint.2022.103662</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artint.2022.103662" target="_blank" >10.1016/j.artint.2022.103662</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-agent pathfinding with continuous time
Popis výsledku v původním jazyce
Multi-Agent Pathfinding (MAPF) is the problem of finding paths for multiple agents such that each agent reaches its goal and the agents do not collide. In recent years, variants of MAPF have risen in a wide range of real-world applications such as warehouse management and autonomous vehicles. Optimizing common MAPF objectives, such as minimizing sum-of-costs or makespan, is computationally intractable, but state-of-the-art algorithms are able to solve optimally problems with dozens of agents. However, most MAPF algorithms assume that (1) time is discretized into time steps and (2) the duration of every action is one time step. These simplifying assumptions limit the applicability of MAPF algorithms in real-world applications and raise non-trivial questions such as how to discretize time in an effective manner. We propose two novel MAPF algorithms for finding optimal solutions that do not rely on any time discretization.
Název v anglickém jazyce
Multi-agent pathfinding with continuous time
Popis výsledku anglicky
Multi-Agent Pathfinding (MAPF) is the problem of finding paths for multiple agents such that each agent reaches its goal and the agents do not collide. In recent years, variants of MAPF have risen in a wide range of real-world applications such as warehouse management and autonomous vehicles. Optimizing common MAPF objectives, such as minimizing sum-of-costs or makespan, is computationally intractable, but state-of-the-art algorithms are able to solve optimally problems with dozens of agents. However, most MAPF algorithms assume that (1) time is discretized into time steps and (2) the duration of every action is one time step. These simplifying assumptions limit the applicability of MAPF algorithms in real-world applications and raise non-trivial questions such as how to discretize time in an effective manner. We propose two novel MAPF algorithms for finding optimal solutions that do not rely on any time discretization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence
ISSN
0004-3702
e-ISSN
1872-7921
Svazek periodika
2022
Číslo periodika v rámci svazku
305
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
32
Strana od-do
—
Kód UT WoS článku
000767667600009
EID výsledku v databázi Scopus
2-s2.0-85125812849