ESO-MAPF: Bridging Discrete Planning and Continuous Execution in Multi-Agent Pathfinding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350485" target="_blank" >RIV/68407700:21240/21:00350485 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/17997" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/17997</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ESO-MAPF: Bridging Discrete Planning and Continuous Execution in Multi-Agent Pathfinding
Popis výsledku v původním jazyce
We present ESO-MAPF, a research and educational platform for experimenting with multi-agent path finding (MAPF). ESO-MAPF focuses on demonstrating the planning-acting chain in the MAPF domain. MAPF is the task of finding collision free paths for agents from their starting positions to given individual goals. The standard MAPF uses the abstraction where agents move in an undirected graph via traversing its edges in discrete steps. The discrete abstraction simplifies the planning phase however resulting discrete plans often need to be executed in the real continuous environment. ESO-MAPF shows how to bridge discrete planning and the acting phase in which the resulting plans are executed on physical robots. We simulate centralized plans on a group of OZOBOT Evo robots using their reflex functionalities and outputs on the surface of the screen that serves as the environment. Various problems arising along the planning-acting chain are illustrated to emphasize the educational point of view.
Název v anglickém jazyce
ESO-MAPF: Bridging Discrete Planning and Continuous Execution in Multi-Agent Pathfinding
Popis výsledku anglicky
We present ESO-MAPF, a research and educational platform for experimenting with multi-agent path finding (MAPF). ESO-MAPF focuses on demonstrating the planning-acting chain in the MAPF domain. MAPF is the task of finding collision free paths for agents from their starting positions to given individual goals. The standard MAPF uses the abstraction where agents move in an undirected graph via traversing its edges in discrete steps. The discrete abstraction simplifies the planning phase however resulting discrete plans often need to be executed in the real continuous environment. ESO-MAPF shows how to bridge discrete planning and the acting phase in which the resulting plans are executed on physical robots. We simulate centralized plans on a group of OZOBOT Evo robots using their reflex functionalities and outputs on the surface of the screen that serves as the environment. Various problems arising along the planning-acting chain are illustrated to emphasize the educational point of view.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-866-4
ISSN
2159-5399
e-ISSN
—
Počet stran výsledku
3
Strana od-do
16014-16016
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Virtual
Datum konání akce
2. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000681269807198