Discriminant Analysis on a Stream of Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00357775" target="_blank" >RIV/68407700:21240/22:00357775 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discriminant Analysis on a Stream of Features
Popis výsledku v původním jazyce
Online learning is a well-established problem in machine learning. But while online learning is commonly concerned with learning on a stream of samples, this article is concerned with learning on a stream on features. An online quadratic discriminant analysis (QDA) is proposed because it is fast, capable of modeling feature interactions, and it can still return an exact solution. When a new feature is inserted into a training set, the proposed implementation of QDA showed a 1000-fold speed up to scikit-learn QDA. Fast learning on a stream of features provides a data scientist with timely feedback about the importance of new features during the feature engineering phase. In the production phase, it reduces the cost of updating a model when a new source of potentially useful features appears.
Název v anglickém jazyce
Discriminant Analysis on a Stream of Features
Popis výsledku anglicky
Online learning is a well-established problem in machine learning. But while online learning is commonly concerned with learning on a stream of samples, this article is concerned with learning on a stream on features. An online quadratic discriminant analysis (QDA) is proposed because it is fast, capable of modeling feature interactions, and it can still return an exact solution. When a new feature is inserted into a training set, the proposed implementation of QDA showed a 1000-fold speed up to scikit-learn QDA. Fast learning on a stream of features provides a data scientist with timely feedback about the importance of new features during the feature engineering phase. In the production phase, it reduces the cost of updating a model when a new source of potentially useful features appears.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Applications of Neural Networks
ISBN
978-3-031-08222-1
ISSN
1865-0929
e-ISSN
—
Počet stran výsledku
12
Strana od-do
223-234
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Limenas Hersonissou 700 14 Crete
Datum konání akce
17. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000926169100019