Bracing frameworks consisting of parallelograms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358943" target="_blank" >RIV/68407700:21240/22:00358943 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.26493/2590-9770.1379.7a4" target="_blank" >https://doi.org/10.26493/2590-9770.1379.7a4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26493/2590-9770.1379.7a4" target="_blank" >10.26493/2590-9770.1379.7a4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bracing frameworks consisting of parallelograms
Popis výsledku v původním jazyce
A rectangle in the plane can be continuously deformed preserving its edge lengths, but adding a diagonal brace prevents such a deformation. Bolker and Crapo characterized combinatorially which choices of braces make a grid of squares infinitesimally rigid using a bracing graph: a bipartite graph whose vertices are the columns and rows of the grid, and a row and column are adjacent if and only if they meet at a braced square. Duarte and Francis generalized the notion of the bracing graph to rhombic carpets, proved that the connectivity of the bracing graph implies rigidity and stated the other implication without proof. Nagy Kem gives the equivalence in the infinitesimal setting. We consider continuous deformations of braced frameworks consisting of a graph from a more general class and its placement in the plane such that every 4-cycle forms a parallelogram. We show that rigidity of such a braced framework is equivalent to the non-existence of a special edge coloring, which is in turn equivalent to the corresponding bracing graph being connected.
Název v anglickém jazyce
Bracing frameworks consisting of parallelograms
Popis výsledku anglicky
A rectangle in the plane can be continuously deformed preserving its edge lengths, but adding a diagonal brace prevents such a deformation. Bolker and Crapo characterized combinatorially which choices of braces make a grid of squares infinitesimally rigid using a bracing graph: a bipartite graph whose vertices are the columns and rows of the grid, and a row and column are adjacent if and only if they meet at a braced square. Duarte and Francis generalized the notion of the bracing graph to rhombic carpets, proved that the connectivity of the bracing graph implies rigidity and stated the other implication without proof. Nagy Kem gives the equivalence in the infinitesimal setting. We consider continuous deformations of braced frameworks consisting of a graph from a more general class and its placement in the plane such that every 4-cycle forms a parallelogram. We show that rigidity of such a braced framework is equivalent to the non-existence of a special edge coloring, which is in turn equivalent to the corresponding bracing graph being connected.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Art of Discrete and Applied Mathematics
ISSN
2590-9770
e-ISSN
2590-9770
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85117793129