Scalable Linear Shallow Autoencoder for Collaborative Filtering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360048" target="_blank" >RIV/68407700:21240/22:00360048 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3523227.3551482" target="_blank" >https://doi.org/10.1145/3523227.3551482</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3523227.3551482" target="_blank" >10.1145/3523227.3551482</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable Linear Shallow Autoencoder for Collaborative Filtering
Popis výsledku v původním jazyce
Recently, the RS research community has witnessed a surge in popularity for shallow autoencoder-based CF methods. Due to its straightforward implementation and high accuracy on item retrieval metrics, EASE is potentially the most prominent of these models. Despite its accuracy and simplicity, EASE cannot be employed in some real-world recommender system applications due to its inability to scale to huge interaction matrices. In this paper, we proposed ELSA, a scalable shallow autoencoder method for implicit feedback recommenders. ELSA is a scalable autoencoder in which the hidden layer is factorizable into a low-rank plus sparse structure, thereby drastically lowering memory consumption and computation time. We conducted a comprehensive offline experimental section that combined synthetic and several real-world datasets. We also validated our strategy in an online setting by comparing ELSA to baselines in a live recommender system using an A/B test. Experiments demonstrate that ELSA is scalable and has competitive performance. Finally, we demonstrate the explainability of ELSA by illustrating the recovered latent space.
Název v anglickém jazyce
Scalable Linear Shallow Autoencoder for Collaborative Filtering
Popis výsledku anglicky
Recently, the RS research community has witnessed a surge in popularity for shallow autoencoder-based CF methods. Due to its straightforward implementation and high accuracy on item retrieval metrics, EASE is potentially the most prominent of these models. Despite its accuracy and simplicity, EASE cannot be employed in some real-world recommender system applications due to its inability to scale to huge interaction matrices. In this paper, we proposed ELSA, a scalable shallow autoencoder method for implicit feedback recommenders. ELSA is a scalable autoencoder in which the hidden layer is factorizable into a low-rank plus sparse structure, thereby drastically lowering memory consumption and computation time. We conducted a comprehensive offline experimental section that combined synthetic and several real-world datasets. We also validated our strategy in an online setting by comparing ELSA to baselines in a live recommender system using an A/B test. Experiments demonstrate that ELSA is scalable and has competitive performance. Finally, we demonstrate the explainability of ELSA by illustrating the recovered latent space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RecSys '22: Proceedings of the 16th ACM Conference on Recommender Systems
ISBN
978-1-4503-9278-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
604-609
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Seattle
Datum konání akce
18. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—