Scalable and Explainable Linear Shallow Autoencoders for Collaborative Filtering from Industrial Perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368607" target="_blank" >RIV/68407700:21240/23:00368607 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3565472.3595630" target="_blank" >https://doi.org/10.1145/3565472.3595630</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3565472.3595630" target="_blank" >10.1145/3565472.3595630</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable and Explainable Linear Shallow Autoencoders for Collaborative Filtering from Industrial Perspective
Popis výsledku v původním jazyce
The popularity of linear shallow autoencoders for collaborative filtering is growing in the research community, and internet industry providers of Recommender Systems are also taking notice. However, despite their simplicity and accuracy, these models often cannot be used in real-world industrial recommender systems due to their inability to scale to very large interaction matrices. Our research aims to address this issue by developing a scalable, explainable, and accurate shallow linear autoencoder method for collaborative filtering that meets the demands of real-world recommenders. In this paper, we present our industrial Ph.D. research project, which includes: (1) the development of a scalable method called ELSA and the adaptation of the method to a large real-world recommender and (2) the creation of a framework to visualize the recommender systems insights based on modeling the distribution of retrieval metrics in latent user space. We discuss the current status of our project, the key steps to finish the project, and the possible future extensions after the dissertation.
Název v anglickém jazyce
Scalable and Explainable Linear Shallow Autoencoders for Collaborative Filtering from Industrial Perspective
Popis výsledku anglicky
The popularity of linear shallow autoencoders for collaborative filtering is growing in the research community, and internet industry providers of Recommender Systems are also taking notice. However, despite their simplicity and accuracy, these models often cannot be used in real-world industrial recommender systems due to their inability to scale to very large interaction matrices. Our research aims to address this issue by developing a scalable, explainable, and accurate shallow linear autoencoder method for collaborative filtering that meets the demands of real-world recommenders. In this paper, we present our industrial Ph.D. research project, which includes: (1) the development of a scalable method called ELSA and the adaptation of the method to a large real-world recommender and (2) the creation of a framework to visualize the recommender systems insights based on modeling the distribution of retrieval metrics in latent user space. We discuss the current status of our project, the key steps to finish the project, and the possible future extensions after the dissertation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
UMAP '23: Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization
ISBN
978-1-4503-9932-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
290-295
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Limassol
Datum konání akce
26. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001051715400031