Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-agent path finding with mutex propagation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360668" target="_blank" >RIV/68407700:21240/22:00360668 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.artint.2022.103766" target="_blank" >https://doi.org/10.1016/j.artint.2022.103766</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.artint.2022.103766" target="_blank" >10.1016/j.artint.2022.103766</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-agent path finding with mutex propagation

  • Popis výsledku v původním jazyce

    Mutex propagation is a form of efficient constraint propagation popularly used in AI planning to tightly approximate the reachable states from a given state. We utilize this idea in the context of Multi-Agent Path Finding (MAPF). When adapted to MAPF, mutex propagation provides stronger constraints for conflict resolution in CBS, a popular optimal search-based MAPF algorithm, as well as in MDD-SAT, an optimal satisfiability-based MAPF algorithm. Mutex propagation provides CBS with the ability to break symmetries in MAPF and provides MDD-SAT with the ability to make stronger inferences than unit propagation. While existing work identifies a limited form of symmetries and requires the manual design of symmetry-breaking constraints, mutex propagation is more general and allows for the automated design of symmetry-breaking constraints. Our experimental results show that CBS with mutex propagation is capable of outperforming CBSH-RCT, a state-of-the-art variant of CBS, with respect to the success rate. We also show that MDD-SAT with mutex propagation often performs better than MDD-SAT with respect to the success rate.

  • Název v anglickém jazyce

    Multi-agent path finding with mutex propagation

  • Popis výsledku anglicky

    Mutex propagation is a form of efficient constraint propagation popularly used in AI planning to tightly approximate the reachable states from a given state. We utilize this idea in the context of Multi-Agent Path Finding (MAPF). When adapted to MAPF, mutex propagation provides stronger constraints for conflict resolution in CBS, a popular optimal search-based MAPF algorithm, as well as in MDD-SAT, an optimal satisfiability-based MAPF algorithm. Mutex propagation provides CBS with the ability to break symmetries in MAPF and provides MDD-SAT with the ability to make stronger inferences than unit propagation. While existing work identifies a limited form of symmetries and requires the manual design of symmetry-breaking constraints, mutex propagation is more general and allows for the automated design of symmetry-breaking constraints. Our experimental results show that CBS with mutex propagation is capable of outperforming CBSH-RCT, a state-of-the-art variant of CBS, with respect to the success rate. We also show that MDD-SAT with mutex propagation often performs better than MDD-SAT with respect to the success rate.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logické uvažování v plánování pohybu pro mnoho robotických agentů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial Intelligence

  • ISSN

    0004-3702

  • e-ISSN

    1872-7921

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    311

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    000843869600001

  • EID výsledku v databázi Scopus

    2-s2.0-85135327187