Domain Dependent Parameter Setting in SAT Solver Using Machine Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00362980" target="_blank" >RIV/68407700:21240/22:00362980 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-22953-4_8" target="_blank" >https://doi.org/10.1007/978-3-031-22953-4_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-22953-4_8" target="_blank" >10.1007/978-3-031-22953-4_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Domain Dependent Parameter Setting in SAT Solver Using Machine Learning Techniques
Popis výsledku v původním jazyce
We address the problem of variable and truth-value choice in modern search-based Boolean satisfiability (SAT) solvers depending on the problem domain. The SAT problem is the task to determine truth-value assignment for variables of a given Boolean formula under which the formula evaluates to true. The SAT problem is often used as a canonical representation of combinatorial problems in many domains of computer science ranging from artificial intelligence to software engineering. Modern complete search-based SAT solvers represent a universal problem solving tool which often provide higher efficiency than ad-hoc direct solving approaches. Many efficient variable and truth-value selection heuristics were devised. Heuristics can usually be fine tuned by single or multiple numerical parameters prior to executing the search process over the concrete SAT instance. In this paper we present a machine learning approach that predicts the parameters of heuristic from the underlying structure of a graph derived from the input SAT instance. Using this approach we effectively fine tune the SAT solver for specific problem domain.
Název v anglickém jazyce
Domain Dependent Parameter Setting in SAT Solver Using Machine Learning Techniques
Popis výsledku anglicky
We address the problem of variable and truth-value choice in modern search-based Boolean satisfiability (SAT) solvers depending on the problem domain. The SAT problem is the task to determine truth-value assignment for variables of a given Boolean formula under which the formula evaluates to true. The SAT problem is often used as a canonical representation of combinatorial problems in many domains of computer science ranging from artificial intelligence to software engineering. Modern complete search-based SAT solvers represent a universal problem solving tool which often provide higher efficiency than ad-hoc direct solving approaches. Many efficient variable and truth-value selection heuristics were devised. Heuristics can usually be fine tuned by single or multiple numerical parameters prior to executing the search process over the concrete SAT instance. In this paper we present a machine learning approach that predicts the parameters of heuristic from the underlying structure of a graph derived from the input SAT instance. Using this approach we effectively fine tune the SAT solver for specific problem domain.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logické uvažování v plánování pohybu pro mnoho robotických agentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Agents and Artificial Intelligence 14th International Conference, ICAART 2022 Virtual Event, February 3–5, 2022 Revised Selected Papers
ISBN
978-3-031-22952-7
ISSN
2945-9133
e-ISSN
1611-3349
Počet stran výsledku
32
Strana od-do
169-200
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Místo konání akce
Online
Datum konání akce
3. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000971480800008