Deep learning techniques for integrated circuit die performance prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00365085" target="_blank" >RIV/68407700:21240/22:00365085 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1557/s43580-022-00308-0" target="_blank" >https://doi.org/10.1557/s43580-022-00308-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1557/s43580-022-00308-0" target="_blank" >10.1557/s43580-022-00308-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning techniques for integrated circuit die performance prediction
Popis výsledku v původním jazyce
Predicting integrated circuit (IC) functionality based on process control monitoring (PCM) parameters without individual die testing is a major challenge for manufacturers due to the high cost of electrical die measurement on the wafer. Complex dependencies between individual PCM parameters can be used to explain certain patterns of dice failure using Deep learning (DL) algorithms. However, random failure patterns due to process defects cannot be detected by this method. Combining PCM and in-process defect inspection data can be an ultimate prediction technique. In some cases, however, the availability of defect inspection data is much lower than the availability of PCM data, so direct ensemble training is rather ambiguous. This paper shows how to efficiently utilize both defect and PCM data to train a model to predict IC functionality. Such a hybrid model outperforms PCM-only solutions, and in contrast to a defect-only model predicts also failure areas across the wafer.
Název v anglickém jazyce
Deep learning techniques for integrated circuit die performance prediction
Popis výsledku anglicky
Predicting integrated circuit (IC) functionality based on process control monitoring (PCM) parameters without individual die testing is a major challenge for manufacturers due to the high cost of electrical die measurement on the wafer. Complex dependencies between individual PCM parameters can be used to explain certain patterns of dice failure using Deep learning (DL) algorithms. However, random failure patterns due to process defects cannot be detected by this method. Combining PCM and in-process defect inspection data can be an ultimate prediction technique. In some cases, however, the availability of defect inspection data is much lower than the availability of PCM data, so direct ensemble training is rather ambiguous. This paper shows how to efficiently utilize both defect and PCM data to train a model to predict IC functionality. Such a hybrid model outperforms PCM-only solutions, and in contrast to a defect-only model predicts also failure areas across the wafer.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MRS Advances
ISSN
2059-8521
e-ISSN
2059-8521
Svazek periodika
7
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
683-688
Kód UT WoS článku
000838469100001
EID výsledku v databázi Scopus
2-s2.0-85135779047