On the Smallest Synchronizing Terms of Finite Tree Automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368009" target="_blank" >RIV/68407700:21240/23:00368009 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-40247-0_5" target="_blank" >https://doi.org/10.1007/978-3-031-40247-0_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40247-0_5" target="_blank" >10.1007/978-3-031-40247-0_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Smallest Synchronizing Terms of Finite Tree Automata
Popis výsledku v původním jazyce
This paper deals with properties of synchronizing terms for finite tree automata, which is a generalization of the synchronization principle of deterministic finite string automata (DFA) and such terms correspond to a connected subgraph, where a state in the root is always the same regardless of states of subtrees attached to it. We ask, what is the maximum height of the smallest synchronizing term of a deterministic bottom-up tree automaton (DFTA) with n states, which naturally leads to two types of synchronizing terms, called weak and strong, that depend on whether a variable, i.e., a placeholder for a subtree, must be present in at least one leaf or all of them. We prove that the maximum height in the case of weak synchronization has a theoretical upper bound sl(????)+????-1, where sl(????) is the maximum length of the shortest synchronizing string of an n-state DFAs. For strong synchronization, we prove exponential bounds. We provide a theoretical upper bound of 2^????-????-1 for the height and two constructions of automata approaching it. One achieves the height of Θ(2^(????-root ????)) with an alphabet of linear size, and the other achieves 2^(????-1)-1 with an alphabet of quadratic size.
Název v anglickém jazyce
On the Smallest Synchronizing Terms of Finite Tree Automata
Popis výsledku anglicky
This paper deals with properties of synchronizing terms for finite tree automata, which is a generalization of the synchronization principle of deterministic finite string automata (DFA) and such terms correspond to a connected subgraph, where a state in the root is always the same regardless of states of subtrees attached to it. We ask, what is the maximum height of the smallest synchronizing term of a deterministic bottom-up tree automaton (DFTA) with n states, which naturally leads to two types of synchronizing terms, called weak and strong, that depend on whether a variable, i.e., a placeholder for a subtree, must be present in at least one leaf or all of them. We prove that the maximum height in the case of weak synchronization has a theoretical upper bound sl(????)+????-1, where sl(????) is the maximum length of the shortest synchronizing string of an n-state DFAs. For strong synchronization, we prove exponential bounds. We provide a theoretical upper bound of 2^????-????-1 for the height and two constructions of automata approaching it. One achieves the height of Θ(2^(????-root ????)) with an alphabet of linear size, and the other achieves 2^(????-1)-1 with an alphabet of quadratic size.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Implementation and Application of Automata
ISBN
978-3-031-40247-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
79-90
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Famagusta
Datum konání akce
19. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001360247600005