Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lessons Learned from Ariel Data Challenge 2022 - Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368593" target="_blank" >RIV/68407700:21240/23:00368593 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://proceedings.mlr.press/v220/yip22a.html" target="_blank" >https://proceedings.mlr.press/v220/yip22a.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lessons Learned from Ariel Data Challenge 2022 - Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

  • Popis výsledku v původním jazyce

    Exo-atmospheric studies, i.e. the study of exoplanetary atmospheres, is an emerging frontier in Planetary Science. To understand the physical properties of hundreds of exoplanets, astronomers have traditionally relied on sampling-based methods. However, with the growing number of exoplanet detections (i.e. increased data quantity) and advancements in technology from telescopes such as JWST and Ariel (i.e. improved data quality), there is a need for more scalable data analysis techniques. The Ariel Data Challenge 2022 aims to find interdisciplinary solutions from the NeurIPS community. Results from the challenge indicate that machine learning (ML) models have the potential to provide quick insights for thousands of planets and millions of atmospheric models. However, the machine learning models are not immune to data drifts, and future research should investigate ways to quantify and mitigate their negative impact.

  • Název v anglickém jazyce

    Lessons Learned from Ariel Data Challenge 2022 - Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

  • Popis výsledku anglicky

    Exo-atmospheric studies, i.e. the study of exoplanetary atmospheres, is an emerging frontier in Planetary Science. To understand the physical properties of hundreds of exoplanets, astronomers have traditionally relied on sampling-based methods. However, with the growing number of exoplanet detections (i.e. increased data quantity) and advancements in technology from telescopes such as JWST and Ariel (i.e. improved data quality), there is a need for more scalable data analysis techniques. The Ariel Data Challenge 2022 aims to find interdisciplinary solutions from the NeurIPS community. Results from the challenge indicate that machine learning (ML) models have the potential to provide quick insights for thousands of planets and millions of atmospheric models. However, the machine learning models are not immune to data drifts, and future research should investigate ways to quantify and mitigate their negative impact.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the NeurIPS 2022 Competitions Track

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

    2640-3498

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Název nakladatele

    Proceedings of Machine Learning Research

  • Místo vydání

  • Místo konání akce

    New Orleans

  • Datum konání akce

    28. 11. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku