Generalization Bounds for Inductive Matrix Completion in Low-noise Settings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00369584" target="_blank" >RIV/68407700:21240/23:00369584 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v37i7.26018" target="_blank" >https://doi.org/10.1609/aaai.v37i7.26018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v37i7.26018" target="_blank" >10.1609/aaai.v37i7.26018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalization Bounds for Inductive Matrix Completion in Low-noise Settings
Popis výsledku v původním jazyce
We study inductive matrix completion (matrix completion with side information) under an i.i.d. subgaussian noise assumption at a low noise regime, with uniform sampling of the entries. We obtain for the first time generalization bounds with the following three properties: (1) they scale like the standard deviation of the noise and in particular approach zero in the exact recovery case; (2) even in the presence of noise, they converge to zero when the sample size approaches infinity; and (3) for a fixed dimension of the side information, they only have a logarithmic dependence on the size of the matrix. Differently from many works in approximate recovery, we present results both for bounded Lipschitz losses and for the absolute loss, with the latter relying on Talagrand-type inequalities. The proofs create a bridge between two approaches to the theoretical analysis of matrix completion, since they consist in a combination of techniques from both the exact recovery literature and the approximate recovery literature.
Název v anglickém jazyce
Generalization Bounds for Inductive Matrix Completion in Low-noise Settings
Popis výsledku anglicky
We study inductive matrix completion (matrix completion with side information) under an i.i.d. subgaussian noise assumption at a low noise regime, with uniform sampling of the entries. We obtain for the first time generalization bounds with the following three properties: (1) they scale like the standard deviation of the noise and in particular approach zero in the exact recovery case; (2) even in the presence of noise, they converge to zero when the sample size approaches infinity; and (3) for a fixed dimension of the side information, they only have a logarithmic dependence on the size of the matrix. Differently from many works in approximate recovery, we present results both for bounded Lipschitz losses and for the absolute loss, with the latter relying on Talagrand-type inequalities. The proofs create a bridge between two approaches to the theoretical analysis of matrix completion, since they consist in a combination of techniques from both the exact recovery literature and the approximate recovery literature.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 37th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-880-0
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
8447-8455
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Washington, DC
Datum konání akce
7. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—