Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00371960" target="_blank" >RIV/68407700:21240/23:00371960 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS55552.2023.10341952" target="_blank" >https://doi.org/10.1109/IROS55552.2023.10341952</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS55552.2023.10341952" target="_blank" >10.1109/IROS55552.2023.10341952</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning
Popis výsledku v původním jazyce
We address the problem of multi-goal multi robot path planning (MG-MRPP) via counterexample guided abstraction refinement (CEGAR) framework. MG-MRPP generalizes the standard discrete multi-robot path planning (MRPP) problem. While the task in MRPP is to navigate robots in an undirected graph from their starting vertices to one individual goal vertex per robot, MG-MRPP assigns each robot multiple goal vertices and the task is to visit each of them at least once. Solving MG-MRPP not only requires finding collision free paths for individual robots but also determining the order of visiting robot's goal vertices so that common objectives like the sum-of-costs are optimized. We use the Boolean satisfiability (SAT) techniques as the underlying paradigm. A specifically novel in this work is the use of non-refined abstractions when formulating the MG-MRPP problem as SAT. While the standard CEGAR approach for MG-MRPP does not encode collision elimination constraints in the initial abstraction and leave them to subsequent refinements. The novel CEGAR approach leaves some abstractions deliberately non-refined. This adds the necessity to post-process the answers obtained from the underlying SAT solver as these answers slightly differ from the correct MG-MRPP solutions. Non-refining however yields order-of-magnitude smaller SAT encodings than those of the previous CEGAR approach and speeds up the overall solving process.
Název v anglickém jazyce
Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning
Popis výsledku anglicky
We address the problem of multi-goal multi robot path planning (MG-MRPP) via counterexample guided abstraction refinement (CEGAR) framework. MG-MRPP generalizes the standard discrete multi-robot path planning (MRPP) problem. While the task in MRPP is to navigate robots in an undirected graph from their starting vertices to one individual goal vertex per robot, MG-MRPP assigns each robot multiple goal vertices and the task is to visit each of them at least once. Solving MG-MRPP not only requires finding collision free paths for individual robots but also determining the order of visiting robot's goal vertices so that common objectives like the sum-of-costs are optimized. We use the Boolean satisfiability (SAT) techniques as the underlying paradigm. A specifically novel in this work is the use of non-refined abstractions when formulating the MG-MRPP problem as SAT. While the standard CEGAR approach for MG-MRPP does not encode collision elimination constraints in the initial abstraction and leave them to subsequent refinements. The novel CEGAR approach leaves some abstractions deliberately non-refined. This adds the necessity to post-process the answers obtained from the underlying SAT solver as these answers slightly differ from the correct MG-MRPP solutions. Non-refining however yields order-of-magnitude smaller SAT encodings than those of the previous CEGAR approach and speeds up the overall solving process.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logické uvažování v plánování pohybu pro mnoho robotických agentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-6654-9190-7
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
7
Strana od-do
7341-7347
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Detroit, MA
Datum konání akce
1. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001136907801109