Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00371960" target="_blank" >RIV/68407700:21240/23:00371960 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/IROS55552.2023.10341952" target="_blank" >https://doi.org/10.1109/IROS55552.2023.10341952</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS55552.2023.10341952" target="_blank" >10.1109/IROS55552.2023.10341952</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning

  • Popis výsledku v původním jazyce

    We address the problem of multi-goal multi robot path planning (MG-MRPP) via counterexample guided abstraction refinement (CEGAR) framework. MG-MRPP generalizes the standard discrete multi-robot path planning (MRPP) problem. While the task in MRPP is to navigate robots in an undirected graph from their starting vertices to one individual goal vertex per robot, MG-MRPP assigns each robot multiple goal vertices and the task is to visit each of them at least once. Solving MG-MRPP not only requires finding collision free paths for individual robots but also determining the order of visiting robot's goal vertices so that common objectives like the sum-of-costs are optimized. We use the Boolean satisfiability (SAT) techniques as the underlying paradigm. A specifically novel in this work is the use of non-refined abstractions when formulating the MG-MRPP problem as SAT. While the standard CEGAR approach for MG-MRPP does not encode collision elimination constraints in the initial abstraction and leave them to subsequent refinements. The novel CEGAR approach leaves some abstractions deliberately non-refined. This adds the necessity to post-process the answers obtained from the underlying SAT solver as these answers slightly differ from the correct MG-MRPP solutions. Non-refining however yields order-of-magnitude smaller SAT encodings than those of the previous CEGAR approach and speeds up the overall solving process.

  • Název v anglickém jazyce

    Counterexample Guided Abstraction Refinement with Non-Refined Abstractions for Multi-Goal Multi-Robot Path Planning

  • Popis výsledku anglicky

    We address the problem of multi-goal multi robot path planning (MG-MRPP) via counterexample guided abstraction refinement (CEGAR) framework. MG-MRPP generalizes the standard discrete multi-robot path planning (MRPP) problem. While the task in MRPP is to navigate robots in an undirected graph from their starting vertices to one individual goal vertex per robot, MG-MRPP assigns each robot multiple goal vertices and the task is to visit each of them at least once. Solving MG-MRPP not only requires finding collision free paths for individual robots but also determining the order of visiting robot's goal vertices so that common objectives like the sum-of-costs are optimized. We use the Boolean satisfiability (SAT) techniques as the underlying paradigm. A specifically novel in this work is the use of non-refined abstractions when formulating the MG-MRPP problem as SAT. While the standard CEGAR approach for MG-MRPP does not encode collision elimination constraints in the initial abstraction and leave them to subsequent refinements. The novel CEGAR approach leaves some abstractions deliberately non-refined. This adds the necessity to post-process the answers obtained from the underlying SAT solver as these answers slightly differ from the correct MG-MRPP solutions. Non-refining however yields order-of-magnitude smaller SAT encodings than those of the previous CEGAR approach and speeds up the overall solving process.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logické uvažování v plánování pohybu pro mnoho robotických agentů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • ISBN

    978-1-6654-9190-7

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Počet stran výsledku

    7

  • Strana od-do

    7341-7347

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Detroit, MA

  • Datum konání akce

    1. 10. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001136907801109