Sparsification for Fast Optimal Multi-Robot Path Planning in Lazy Compilation Schemes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00356866" target="_blank" >RIV/68407700:21240/21:00356866 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS51168.2021.9636296" target="_blank" >https://doi.org/10.1109/IROS51168.2021.9636296</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS51168.2021.9636296" target="_blank" >10.1109/IROS51168.2021.9636296</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparsification for Fast Optimal Multi-Robot Path Planning in Lazy Compilation Schemes
Popis výsledku v původním jazyce
Path planning for multiple robots (MRPP) represents a task of finding non-colliding paths for robots via which they can navigate from their initial positions to specified goal positions. The problem is often modeled using undirected graphs where robots move between vertices across edges while no two robots can simultaneously occupy the same vertex nor can traverse an edge in opposite directions. Contemporary optimal solving algorithms include dedicated search-based methods, that solve the problem directly, and compilation-based algorithms that reduce MRPP to a different formalism for which an efficient solver exists, such as constraint programming (CP), mixed integer linear programming (MILP), or Boolean satisfiability (SAT). In this paper, we enhance existing SAT-based algorithm for MRPP via sparsification of the set of candidate paths for each robot from which the target Boolean encoding is derived. Suggested sparsification of the set of paths led to a smaller target Boolean formulae that can be constructed and solved faster while optimality guarantees of the approach have been kept.
Název v anglickém jazyce
Sparsification for Fast Optimal Multi-Robot Path Planning in Lazy Compilation Schemes
Popis výsledku anglicky
Path planning for multiple robots (MRPP) represents a task of finding non-colliding paths for robots via which they can navigate from their initial positions to specified goal positions. The problem is often modeled using undirected graphs where robots move between vertices across edges while no two robots can simultaneously occupy the same vertex nor can traverse an edge in opposite directions. Contemporary optimal solving algorithms include dedicated search-based methods, that solve the problem directly, and compilation-based algorithms that reduce MRPP to a different formalism for which an efficient solver exists, such as constraint programming (CP), mixed integer linear programming (MILP), or Boolean satisfiability (SAT). In this paper, we enhance existing SAT-based algorithm for MRPP via sparsification of the set of candidate paths for each robot from which the target Boolean encoding is derived. Suggested sparsification of the set of paths led to a smaller target Boolean formulae that can be constructed and solved faster while optimality guarantees of the approach have been kept.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-6654-1714-3
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
7931-7938
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Praha
Datum konání akce
27. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000755125506042