Sparse Real-time Decision Diagrams for Continuous Multi-Robot Path Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00356867" target="_blank" >RIV/68407700:21240/21:00356867 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICTAI52525.2021.00021" target="_blank" >https://doi.org/10.1109/ICTAI52525.2021.00021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI52525.2021.00021" target="_blank" >10.1109/ICTAI52525.2021.00021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Real-time Decision Diagrams for Continuous Multi-Robot Path Planning
Popis výsledku v původním jazyce
Multi-robot path planning (MRPP) is the task of finding non-conflicting paths for robots via which they can navigate themselves to specified individual goal positions. MRPP uses an undirected graph to represent a shared environment in which the robots move instantaneously between vertices in discrete time steps. Such discrete formulation enables relatively simple algorithms, often based on multi-valued decision diagrams (MDDs) that represent possible paths for each robot, but results in an inaccurate modeling of the real robotic task. Recently introduced continuous variant of MRPP assumes fixed trajectories for robots and fully continuous time but is more difficult to be addressed algorithmically. The set of possible paths for individual robots in the continuous variant can be represented in real-time decision diagram (RDD) which however is often too large. An improvement of RDDs based on sparsification that includes paths into RDD according to their heuristic prioritization is suggested in this short paper. We show that sparse RDDs can improve existing compilation-based algorithms significantly while keeping their optimality guarantees.
Název v anglickém jazyce
Sparse Real-time Decision Diagrams for Continuous Multi-Robot Path Planning
Popis výsledku anglicky
Multi-robot path planning (MRPP) is the task of finding non-conflicting paths for robots via which they can navigate themselves to specified individual goal positions. MRPP uses an undirected graph to represent a shared environment in which the robots move instantaneously between vertices in discrete time steps. Such discrete formulation enables relatively simple algorithms, often based on multi-valued decision diagrams (MDDs) that represent possible paths for each robot, but results in an inaccurate modeling of the real robotic task. Recently introduced continuous variant of MRPP assumes fixed trajectories for robots and fully continuous time but is more difficult to be addressed algorithmically. The set of possible paths for individual robots in the continuous variant can be represented in real-time decision diagram (RDD) which however is often too large. An improvement of RDDs based on sparsification that includes paths into RDD according to their heuristic prioritization is suggested in this short paper. We show that sparse RDDs can improve existing compilation-based algorithms significantly while keeping their optimality guarantees.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)
ISBN
978-1-6654-0898-1
ISSN
1082-3409
e-ISSN
2375-0197
Počet stran výsledku
6
Strana od-do
91-96
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Washington
Datum konání akce
1. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000747482300013