Sparse Decision Diagrams for SAT-based Compilation of Multi-Agent Path Finding (Extended Abstract).
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360953" target="_blank" >RIV/68407700:21240/22:00360953 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/socs.v15i1.21798" target="_blank" >https://doi.org/10.1609/socs.v15i1.21798</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/socs.v15i1.21798" target="_blank" >10.1609/socs.v15i1.21798</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Decision Diagrams for SAT-based Compilation of Multi-Agent Path Finding (Extended Abstract).
Popis výsledku v původním jazyce
Multi-agent path finding (MAPF) represents a task of finding non-colliding paths for agents via which they can navigate from their initial positions to specified goal positions. Contemporary optimal solving algorithms include dedicated search-based methods, that solve the problem directly, and compilation-based algorithms that reduce MAPF to a different formalism for which an efficient solver exists. In this paper, we enhance the existing Boolean satisfiability-based (SAT) algorithm for MAPF via using sparse decision diagrams representing the set of candidate paths for each agent, from which the target Boolean encoding is derived, considering more promising paths before the less promising ones are taken into account. Suggested sparse diagrams lead to a smaller target Boolean formulae that can be constructed and solved faster while optimality guarantees of the approach are kept. Specifically, considering the candidate paths sparsely instead of considering them all makes the SAT-based approach more competitive for MAPF on large maps.
Název v anglickém jazyce
Sparse Decision Diagrams for SAT-based Compilation of Multi-Agent Path Finding (Extended Abstract).
Popis výsledku anglicky
Multi-agent path finding (MAPF) represents a task of finding non-colliding paths for agents via which they can navigate from their initial positions to specified goal positions. Contemporary optimal solving algorithms include dedicated search-based methods, that solve the problem directly, and compilation-based algorithms that reduce MAPF to a different formalism for which an efficient solver exists. In this paper, we enhance the existing Boolean satisfiability-based (SAT) algorithm for MAPF via using sparse decision diagrams representing the set of candidate paths for each agent, from which the target Boolean encoding is derived, considering more promising paths before the less promising ones are taken into account. Suggested sparse diagrams lead to a smaller target Boolean formulae that can be constructed and solved faster while optimality guarantees of the approach are kept. Specifically, considering the candidate paths sparsely instead of considering them all makes the SAT-based approach more competitive for MAPF on large maps.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logické uvažování v plánování pohybu pro mnoho robotických agentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Fifteenth International Symposium on Combinatorial Search
ISBN
978-1-57735-873-2
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
317-319
Název nakladatele
Association for the Advancement of Artificial Intelligence (AAAI)
Místo vydání
Palo Alto, California
Místo konání akce
Vídeň
Datum konání akce
21. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—