Improving recommendation diversity and serendipity with an ontology-based algorithm for cold start environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00374422" target="_blank" >RIV/68407700:21240/23:00374422 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s41060-023-00418-4" target="_blank" >https://doi.org/10.1007/s41060-023-00418-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41060-023-00418-4" target="_blank" >10.1007/s41060-023-00418-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving recommendation diversity and serendipity with an ontology-based algorithm for cold start environments
Popis výsledku v původním jazyce
Every real-life environments where users interact with items (products, films, research expert profiles) have several development phases. In the Cold-start phase, there are almost no interactions among users and items content-based recommendation systems (RS) can only recommend based on matching the attributes of the items. In the transition state, items start to collect user interactions but still a significant number of items have too small number of interactions, RS does not allow users to discover cold items. In a regular state, where most of the items in the system have enough interactions, the recommendations often suffer from low diversity of the items within a single recommendation. This article proposes a general recommendation algorithm based on Ontological-similarity, which is designed to address all the above problems. Our experiments show that recommendations generated by our approach are consistently better in all environment development phases and increase the success rate of recommendations by almost 50% measured using ontology-aware recall, which is also introduced in this article.
Název v anglickém jazyce
Improving recommendation diversity and serendipity with an ontology-based algorithm for cold start environments
Popis výsledku anglicky
Every real-life environments where users interact with items (products, films, research expert profiles) have several development phases. In the Cold-start phase, there are almost no interactions among users and items content-based recommendation systems (RS) can only recommend based on matching the attributes of the items. In the transition state, items start to collect user interactions but still a significant number of items have too small number of interactions, RS does not allow users to discover cold items. In a regular state, where most of the items in the system have enough interactions, the recommendations often suffer from low diversity of the items within a single recommendation. This article proposes a general recommendation algorithm based on Ontological-similarity, which is designed to address all the above problems. Our experiments show that recommendations generated by our approach are consistently better in all environment development phases and increase the success rate of recommendations by almost 50% measured using ontology-aware recall, which is also introduced in this article.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Data Science and Analytics
ISSN
2364-415X
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
1000
Strana od-do
—
Kód UT WoS článku
001040548100002
EID výsledku v databázi Scopus
2-s2.0-85175100818