Flexibility and rigidity of frameworks consisting of triangles and parallelograms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00373180" target="_blank" >RIV/68407700:21240/24:00373180 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.comgeo.2023.102055" target="_blank" >https://doi.org/10.1016/j.comgeo.2023.102055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comgeo.2023.102055" target="_blank" >10.1016/j.comgeo.2023.102055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flexibility and rigidity of frameworks consisting of triangles and parallelograms
Popis výsledku v původním jazyce
A framework, which is a (possibly infinite) graph with a realization of its vertices in the plane, is called flexible if it can be continuously deformed while preserving the edge lengths. We focus on flexibility of frameworks in which 4-cycles form parallelograms. For the class of frameworks considered in this paper (allowing triangles), we prove that the following are equivalent: flexibility, infinitesimal flexibility, the existence of at least two classes of an equivalence relation based on 3- and 4-cycles and being a non -trivial subgraph of the Cartesian product of graphs. We study the algorithmic aspects and the rotationally symmetric version of the problem. The results are illustrated on frameworks obtained from tessellations by regular polygons.
Název v anglickém jazyce
Flexibility and rigidity of frameworks consisting of triangles and parallelograms
Popis výsledku anglicky
A framework, which is a (possibly infinite) graph with a realization of its vertices in the plane, is called flexible if it can be continuously deformed while preserving the edge lengths. We focus on flexibility of frameworks in which 4-cycles form parallelograms. For the class of frameworks considered in this paper (allowing triangles), we prove that the following are equivalent: flexibility, infinitesimal flexibility, the existence of at least two classes of an equivalence relation based on 3- and 4-cycles and being a non -trivial subgraph of the Cartesian product of graphs. We study the algorithmic aspects and the rotationally symmetric version of the problem. The results are illustrated on frameworks obtained from tessellations by regular polygons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-04381L" target="_blank" >GF22-04381L: Paradoxně pohyblivé realizace grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Geometry: Theory and Applications
ISSN
0925-7721
e-ISSN
1879-081X
Svazek periodika
120
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001200483600001
EID výsledku v databázi Scopus
2-s2.0-85185536089