On the Complexity of Target Set Selection in Simple Geometric Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375755" target="_blank" >RIV/68407700:21240/24:00375755 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.46298/dmtcs.11591" target="_blank" >https://doi.org/10.46298/dmtcs.11591</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46298/dmtcs.11591" target="_blank" >10.46298/dmtcs.11591</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Complexity of Target Set Selection in Simple Geometric Networks
Popis výsledku v původním jazyce
We study the following model of disease spread in a social network. At first, all individuals are either infected or healthy. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient number of its direct neighbors are already infected. We represent the social network as a graph. Inspired by the real-world restrictions in the recent epidemic, especially by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric intersection graphs. We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves on simpler geometric graph classes, such as interval graphs and grid graphs.
Název v anglickém jazyce
On the Complexity of Target Set Selection in Simple Geometric Networks
Popis výsledku anglicky
We study the following model of disease spread in a social network. At first, all individuals are either infected or healthy. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient number of its direct neighbors are already infected. We represent the social network as a graph. Inspired by the real-world restrictions in the recent epidemic, especially by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric intersection graphs. We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves on simpler geometric graph classes, such as interval graphs and grid graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-19557S" target="_blank" >GA22-19557S: Nové výzvy ve výpočetní socální volbě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
1365-8050
Svazek periodika
26
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
001339628500001
EID výsledku v databázi Scopus
2-s2.0-85203108066