Machine Learning Based Tool for Automated Sperm Cell Tracking and Sperm Bundle Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00377076" target="_blank" >RIV/68407700:21240/24:00377076 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-70381-2_2" target="_blank" >https://doi.org/10.1007/978-3-031-70381-2_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70381-2_2" target="_blank" >10.1007/978-3-031-70381-2_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Based Tool for Automated Sperm Cell Tracking and Sperm Bundle Detection
Popis výsledku v původním jazyce
This study introduces a novel machine learning-based methodology for automated detection and tracking of sperm cells within microscopic video recordings, aiming to elucidate the dynamics and motion patterns of individual sperm cells as well as sperm cell bundles. At first, the method identifies sperm cells across successive frames within a video sequence, facilitating the reconstruction of each cell's trajectory over time. Subsequently, we introduce a classification algorithm that distinguishes between solitary sperm cells, clusters of adjacent cells, and cohesive sperm cell bundles, addressing a gap in existing methodologies. Finally, we employ three conventional metrics for velocity assessment: Straight Line Velocity (VSL) and Average Path Velocity (VAP) and Curvilinear velocity (VCL), to quantify the movement speed of both individual sperm cells and bundles. The approach represents a significant advancement in the automated analysis of sperm motility and aggregation phenomena, providing a robust tool for researchers to study sperm behavior with enhanced accuracy and efficiency. The integration of machine learning techniques in sperm cell detection and tracking offers promising insights into reproductive biology and fertility studies.
Název v anglickém jazyce
Machine Learning Based Tool for Automated Sperm Cell Tracking and Sperm Bundle Detection
Popis výsledku anglicky
This study introduces a novel machine learning-based methodology for automated detection and tracking of sperm cells within microscopic video recordings, aiming to elucidate the dynamics and motion patterns of individual sperm cells as well as sperm cell bundles. At first, the method identifies sperm cells across successive frames within a video sequence, facilitating the reconstruction of each cell's trajectory over time. Subsequently, we introduce a classification algorithm that distinguishes between solitary sperm cells, clusters of adjacent cells, and cohesive sperm cell bundles, addressing a gap in existing methodologies. Finally, we employ three conventional metrics for velocity assessment: Straight Line Velocity (VSL) and Average Path Velocity (VAP) and Curvilinear velocity (VCL), to quantify the movement speed of both individual sperm cells and bundles. The approach represents a significant advancement in the automated analysis of sperm motility and aggregation phenomena, providing a robust tool for researchers to study sperm behavior with enhanced accuracy and efficiency. The integration of machine learning techniques in sperm cell detection and tracking offers promising insights into reproductive biology and fertility studies.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track
ISBN
978-3-031-70380-5
ISSN
2945-9133
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
19-32
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Vilnius
Datum konání akce
9. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001330399500002