Generating operators between Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00377163" target="_blank" >RIV/68407700:21240/24:00377163 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s13398-024-01582-3" target="_blank" >https://doi.org/10.1007/s13398-024-01582-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13398-024-01582-3" target="_blank" >10.1007/s13398-024-01582-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating operators between Banach spaces
Popis výsledku v původním jazyce
We introduce and study the notion of generating operators as those norm-one operators G:X⟶Y such that for every 0<δ<1, the set {xelementX:‖x‖⩽1,‖Gx‖>1-δ} generates the unit ball of X by closed convex hull. This class of operators includes isometric embeddings, spear operators (actually, operators with the alternative Daugavet property), and other examples like the natural inclusions of ℓ1 into c0 and of Linfinity[0,1] into L1[0,1]. We first present a characterization in terms of the adjoint operator, make a discussion on the behaviour of diagonal generating operators on c0-, ℓ1-, and ℓinfinity-sums, and present examples in some classical Banach spaces. Even though rank-one generating operators always attain their norm, there are generating operators, even of rank-two, which do not attain their norm. We discuss when a Banach space can be the domain of a generating operator which does not attain its norm in terms of the behaviour of some spear sets of the dual space. Finally, we study when the set of all generating operators between two Banach spaces X and Y generates all non-expansive operators by closed convex hull. We show that this is the case when X=L1(μ) and Y has the Radon-Nikodým property with respect to μ. Therefore, when X=ℓ1(Γ), this is the case for every target space Y. Conversely, we also show that a real finite-dimensional space X satisfies that generating operators from X to Y generate all non-expansive operators by closed convex hull only in the case that X is an ℓ1-space.
Název v anglickém jazyce
Generating operators between Banach spaces
Popis výsledku anglicky
We introduce and study the notion of generating operators as those norm-one operators G:X⟶Y such that for every 0<δ<1, the set {xelementX:‖x‖⩽1,‖Gx‖>1-δ} generates the unit ball of X by closed convex hull. This class of operators includes isometric embeddings, spear operators (actually, operators with the alternative Daugavet property), and other examples like the natural inclusions of ℓ1 into c0 and of Linfinity[0,1] into L1[0,1]. We first present a characterization in terms of the adjoint operator, make a discussion on the behaviour of diagonal generating operators on c0-, ℓ1-, and ℓinfinity-sums, and present examples in some classical Banach spaces. Even though rank-one generating operators always attain their norm, there are generating operators, even of rank-two, which do not attain their norm. We discuss when a Banach space can be the domain of a generating operator which does not attain its norm in terms of the behaviour of some spear sets of the dual space. Finally, we study when the set of all generating operators between two Banach spaces X and Y generates all non-expansive operators by closed convex hull. We show that this is the case when X=L1(μ) and Y has the Radon-Nikodým property with respect to μ. Therefore, when X=ℓ1(Γ), this is the case for every target space Y. Conversely, we also show that a real finite-dimensional space X satisfies that generating operators from X to Y generate all non-expansive operators by closed convex hull only in the case that X is an ℓ1-space.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
ISSN
1578-7303
e-ISSN
1579-1505
Svazek periodika
118
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
001202051900002
EID výsledku v databázi Scopus
2-s2.0-85190373899