Workshop o použití strojového učení v klasifikaci síťového provozu a o tom, jak se vyhnout běžným nástrahám
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00379095" target="_blank" >RIV/68407700:21240/24:00379095 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.linkedin.com/posts/centrum-pro-kybernetickou-bezpe%C4%8Dnost-netacad_cybersecurity-education-afjvut-activity-7221779048648073216-z7BV?utm_source=share&utm_medium=member_desktop" target="_blank" >https://www.linkedin.com/posts/centrum-pro-kybernetickou-bezpe%C4%8Dnost-netacad_cybersecurity-education-afjvut-activity-7221779048648073216-z7BV?utm_source=share&utm_medium=member_desktop</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Workshop o použití strojového učení v klasifikaci síťového provozu a o tom, jak se vyhnout běžným nástrahám
Popis výsledku v původním jazyce
Tento workshop nabízí výzkumníkům praktické zkušenosti s aplikací strojového učení na analýzu síťového provozu se zaměřením na klasifikaci služeb pomocí veřejně dostupné datové sady zachycené z reálné sítě za jeden rok, která obsahuje více než 200 služeb. Účastníci prozkoumají praktické metody pro řešení problémů, jako je posun dat způsobený vyvíjejícími se podmínkami sítě, získají přehled o běžných úskalích a strategiích pro zvýšení robustnosti modelu. Tato sekce, která kombinuje teoretické znalosti s aplikacemi v reálném světě, vybaví účastníky nástroji pro efektivní pokrok ve výzkumu v síťové analýze a ukáže jim otevřené výzvy v této oblasti.
Název v anglickém jazyce
Workshop on using Machine Learning in Network Traffic Classification and how to avoid common pitfals
Popis výsledku anglicky
This workshop offers researchers hands-on experience in applying machine learning to network traffic analysis, focusing on service classification using a publicly available dataset captured from a real-world network over one year, featuring over 200 services. Participants will explore practical methods for addressing challenges like data drift caused by evolving network conditions, gaining insights into common pitfalls and strategies to enhance model robustness. Combining theoretical understanding with real-world applications, this session equips attendees with the tools to advance their research in network analytics effectively and show them open challenges in this area.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů