Generalization Analysis of Deep Non-linear Matrix Completion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00381149" target="_blank" >RIV/68407700:21240/24:00381149 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalization Analysis of Deep Non-linear Matrix Completion
Popis výsledku v původním jazyce
We provide generalization bounds for matrix completion with Schatten ???? quasi-norm constraints, which is equivalent to deep matrix factorization with Frobenius constraints. In the uniform sampling regime, the sample complexity scales like ????˜(????????) where ???? is the size of the matrix and ???? is a constraint of the same order as the ground truth rank in the isotropic case. In the distribution-free setting, the bounds scale as ????˜(????1-????2????1+????2), which reduces to the familiar ????root ????32 for ????=1 . Furthermore, we provide an analogue of the weighted trace norm for this setting which brings the sample complexity down to ????˜(????????) in all cases. We then present a non-linear model, Functionally Rescaled Matrix Completion (FRMC) which applies a single trainable function from ℝ->ℝ to each entry of a latent matrix, and prove that this adds only negligible terms of the overall sample complexity, whilst experiments demonstrate that this simple model improvement already leads to significant gains on real data. We also provide extensions of our results to various neural architectures, thereby providing the first comprehensive uniform convergence PAC analysis of neural network matrix completion.
Název v anglickém jazyce
Generalization Analysis of Deep Non-linear Matrix Completion
Popis výsledku anglicky
We provide generalization bounds for matrix completion with Schatten ???? quasi-norm constraints, which is equivalent to deep matrix factorization with Frobenius constraints. In the uniform sampling regime, the sample complexity scales like ????˜(????????) where ???? is the size of the matrix and ???? is a constraint of the same order as the ground truth rank in the isotropic case. In the distribution-free setting, the bounds scale as ????˜(????1-????2????1+????2), which reduces to the familiar ????root ????32 for ????=1 . Furthermore, we provide an analogue of the weighted trace norm for this setting which brings the sample complexity down to ????˜(????????) in all cases. We then present a non-linear model, Functionally Rescaled Matrix Completion (FRMC) which applies a single trainable function from ℝ->ℝ to each entry of a latent matrix, and prove that this adds only negligible terms of the overall sample complexity, whilst experiments demonstrate that this simple model improvement already leads to significant gains on real data. We also provide extensions of our results to various neural architectures, thereby providing the first comprehensive uniform convergence PAC analysis of neural network matrix completion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Machine Learning Research
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Počet stran výsledku
71
Strana od-do
26290-26360
Název nakladatele
Proceedings of Machine Learning Research
Místo vydání
—
Místo konání akce
Vienna
Datum konání akce
21. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—