Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00382222" target="_blank" >RIV/68407700:21240/24:00382222 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TNNLS.2023.3288769" target="_blank" >https://doi.org/10.1109/TNNLS.2023.3288769</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TNNLS.2023.3288769" target="_blank" >10.1109/TNNLS.2023.3288769</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses

  • Popis výsledku v původním jazyce

    In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.

  • Název v anglickém jazyce

    Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses

  • Popis výsledku anglicky

    In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Neural Networks and Learning Systems

  • ISSN

    2162-237X

  • e-ISSN

    2162-2388

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    15624-15637

  • Kód UT WoS článku

    001030658300001

  • EID výsledku v databázi Scopus

    2-s2.0-85164745356