Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00382222" target="_blank" >RIV/68407700:21240/24:00382222 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TNNLS.2023.3288769" target="_blank" >https://doi.org/10.1109/TNNLS.2023.3288769</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNNLS.2023.3288769" target="_blank" >10.1109/TNNLS.2023.3288769</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses
Popis výsledku v původním jazyce
In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.
Název v anglickém jazyce
Uncertainty-Adjusted Recommendation via Matrix Factorization With Weighted Losses
Popis výsledku anglicky
In a recommender systems (RSs) dataset, observed ratings are subject to unequal amounts of noise. Some users might be consistently more conscientious in choosing the ratings they provide for the content they consume. Some items may be very divisive and elicit highly noisy reviews. In this article, we perform a nuclear-norm-based matrix factorization method which relies on side information in the form of an estimate of the uncertainty of each rating. A rating with a higher uncertainty is considered more likely to be erroneous or subject to large amounts of noise, and therefore more likely to mislead the model. Our uncertainty estimate is used as a weighting factor in the loss we optimize. To maintain the favorable scaling and theoretical guarantees coming with nuclear norm regularization even in this weighted context, we introduce an adjusted version of the trace norm regularizer which takes the weights into account. This regularization strategy is inspired from the weighted trace norm which was introduced to tackle nonuniform sampling regimes in matrix completion. Our method exhibits state-of-the-art performance on both synthetic and real life datasets in terms of various performance measures, confirming that we have successfully used the auxiliary information extracted.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Networks and Learning Systems
ISSN
2162-237X
e-ISSN
2162-2388
Svazek periodika
35
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
15624-15637
Kód UT WoS článku
001030658300001
EID výsledku v databázi Scopus
2-s2.0-85164745356