Artificial Neuron with Homeostatic Behaviour
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F10%3A00174740" target="_blank" >RIV/68407700:21260/10:00174740 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Neuron with Homeostatic Behaviour
Popis výsledku v původním jazyce
Homeostasis is a property of a system that regulates its internal environment in order to maintain stable conditions. It is typical for any for biological systems and therefore also for neural cell. This paper presents a way how to use the idea of homeostasis in the field of artificial neural networks. The artificial neuron is here considered as an information homeostat. The state of equilibrium means a situation when the level of computational utility reaches its maximum. This idea is based on the presumption that the neuron has two inputs: first, the output of the neurons in the previous layer through its dendrites, and secondly the part of its output signal that is returned from the folowing layer through its axon. The presented idea is inspired bythe fact that the biological neuron can know which part of its output energy is accepted by other neurons. Several methods of the learning are presented.
Název v anglickém jazyce
Artificial Neuron with Homeostatic Behaviour
Popis výsledku anglicky
Homeostasis is a property of a system that regulates its internal environment in order to maintain stable conditions. It is typical for any for biological systems and therefore also for neural cell. This paper presents a way how to use the idea of homeostasis in the field of artificial neural networks. The artificial neuron is here considered as an information homeostat. The state of equilibrium means a situation when the level of computational utility reaches its maximum. This idea is based on the presumption that the neuron has two inputs: first, the output of the neurons in the previous layer through its dendrites, and secondly the part of its output signal that is returned from the folowing layer through its axon. The presented idea is inspired bythe fact that the biological neuron can know which part of its output energy is accepted by other neurons. Several methods of the learning are presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 2010 European Simulation and modelling conference
ISBN
978-90-77381-57-1
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
—
Název nakladatele
EUROSIS - ETI
Místo vydání
Ghent
Místo konání akce
Hasselt
Datum konání akce
25. 10. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—