Solving VRP Using Genetic Algorithm with Time Constraints in Fitness Function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F13%3A00208774" target="_blank" >RIV/68407700:21260/13:00208774 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving VRP Using Genetic Algorithm with Time Constraints in Fitness Function
Popis výsledku v původním jazyce
A modern way of solving logistics problems is using some evolutionary techniques such as genetic algorithm. The best known logistic problems are TSP (Traveler Salesman Problem) and VRP (Vehicle Routing Problem). There are many experiments and approacheswhen genetic algorithms are applied to solve these problems. Genetic algorithms use two basic operators: crossover and mutation. Number of variations of crossover operators are known in genetic algorithm and a special ERX (Edge Recombination Crossover) was developed for this problem [1][2][4]. Classical TSP and VRP try to find an optimal solution by minimization of the length of travelling distances. In this paper, the fitness function contains time constrain as a criterion except of travelling distance. The fitness function is multidimensional and the lexicographical order is defined. Experiments showed that it is very useful to change the priorities of parts of fitness, especially when time constrain is not performable. This paper is
Název v anglickém jazyce
Solving VRP Using Genetic Algorithm with Time Constraints in Fitness Function
Popis výsledku anglicky
A modern way of solving logistics problems is using some evolutionary techniques such as genetic algorithm. The best known logistic problems are TSP (Traveler Salesman Problem) and VRP (Vehicle Routing Problem). There are many experiments and approacheswhen genetic algorithms are applied to solve these problems. Genetic algorithms use two basic operators: crossover and mutation. Number of variations of crossover operators are known in genetic algorithm and a special ERX (Edge Recombination Crossover) was developed for this problem [1][2][4]. Classical TSP and VRP try to find an optimal solution by minimization of the length of travelling distances. In this paper, the fitness function contains time constrain as a criterion except of travelling distance. The fitness function is multidimensional and the lexicographical order is defined. Experiments showed that it is very useful to change the priorities of parts of fitness, especially when time constrain is not performable. This paper is
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of MAC - TLIT 2013
ISBN
978-80-905442-0-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
Mag Consulting
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
10. 5. 2013
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—