Employing Bayesian Networks and Conditional Probability Functions for Determining Dependences in Road Traffic Accidents Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F17%3A00318381" target="_blank" >RIV/68407700:21260/17:00318381 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=7963867" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=7963867</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Employing Bayesian Networks and Conditional Probability Functions for Determining Dependences in Road Traffic Accidents Data
Popis výsledku v původním jazyce
As we can all experience in our daily life, the traffic in the cities grows quickly, which, unfortunately, means also that the number of accidents grows, too. We try to find causes of accidents that happen for systematic reasons as we perceive eliminating such systematic errors as one of primary goals of smart cities idea. This paper deals with the accident data analysis using Bayesian Networks and conditional probability functions. We try to examine independence between variables in data sample in order to work with data of considerably large dimension. Our approach includes determining the structure of a Bayesian Network basing on a data sample and then utilizing computed probabilities in order to eliminate insignificant relations. We also use conditional probability functions to identify significant dependences basing only on data set. Finally we compare results obtained by both methods and use Goodman and Kruskal's lambda coefficient for confirming their accuracy.
Název v anglickém jazyce
Employing Bayesian Networks and Conditional Probability Functions for Determining Dependences in Road Traffic Accidents Data
Popis výsledku anglicky
As we can all experience in our daily life, the traffic in the cities grows quickly, which, unfortunately, means also that the number of accidents grows, too. We try to find causes of accidents that happen for systematic reasons as we perceive eliminating such systematic errors as one of primary goals of smart cities idea. This paper deals with the accident data analysis using Bayesian Networks and conditional probability functions. We try to examine independence between variables in data sample in order to work with data of considerably large dimension. Our approach includes determining the structure of a Bayesian Network basing on a data sample and then utilizing computed probabilities in order to eliminate insignificant relations. We also use conditional probability functions to identify significant dependences basing only on data set. Finally we compare results obtained by both methods and use Goodman and Kruskal's lambda coefficient for confirming their accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 Smart Cities Symposium Prague (SCSP) - IEEE PROCEEDINGS
ISBN
978-1-5386-3825-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE Press
Místo vydání
New York
Místo konání akce
Prague
Datum konání akce
25. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—