Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Conditional and unconditional safety performance forecasts for aviation predictive risk management

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F18%3A00322388" target="_blank" >RIV/68407700:21260/18:00322388 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/AERO.2018.8396648" target="_blank" >http://dx.doi.org/10.1109/AERO.2018.8396648</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/AERO.2018.8396648" target="_blank" >10.1109/AERO.2018.8396648</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Conditional and unconditional safety performance forecasts for aviation predictive risk management

  • Popis výsledku v původním jazyce

    This paper deals with safety performance predictions in the aviation, which address the long-term global efforts to achieve predictive risk management by the year 2028. Predictive risk management regards timely and accurate detection of risk, well before some incident or accident takes place so that effective control actions can be provided. To assure achieving such diagnosis, it is necessary that mathematically well-founded predictions will become part of existing safety management systems with the capability to predict key performance indicators. From current safety metrics and with respect to the data available in the aviation, overall safety performance was selected as suitable candidate for predictions. To obtain the performance signal, Aerospace Performance Factor methodology was utilized. Due to confidentiality restrictions with regard to aviation safety data, this study relies on public data sets from the domain of European Air Traffic Management. Dedicated resampling method was used to fill in the gaps of real data sets by transforming expert knowledge into mathematical functions. This enabled the possibility to build and test mathematical models for predicting safety performance. Because the identified data sources included some data, which are not necessary for computing safety performance but relevant in its context, conditional forecasts were made possible. With respect to this, the goal of this paper was to research and evaluate possibilities for both conditional and unconditional forecasts in the context of future risk management. Time-series analysis of the computed safety performance was conducted using ordinary least squares and maximum likelihood estimation. Each of the methodology led to different mathematical model and different predictions. Specific aspects of each methodology were identified.

  • Název v anglickém jazyce

    Conditional and unconditional safety performance forecasts for aviation predictive risk management

  • Popis výsledku anglicky

    This paper deals with safety performance predictions in the aviation, which address the long-term global efforts to achieve predictive risk management by the year 2028. Predictive risk management regards timely and accurate detection of risk, well before some incident or accident takes place so that effective control actions can be provided. To assure achieving such diagnosis, it is necessary that mathematically well-founded predictions will become part of existing safety management systems with the capability to predict key performance indicators. From current safety metrics and with respect to the data available in the aviation, overall safety performance was selected as suitable candidate for predictions. To obtain the performance signal, Aerospace Performance Factor methodology was utilized. Due to confidentiality restrictions with regard to aviation safety data, this study relies on public data sets from the domain of European Air Traffic Management. Dedicated resampling method was used to fill in the gaps of real data sets by transforming expert knowledge into mathematical functions. This enabled the possibility to build and test mathematical models for predicting safety performance. Because the identified data sources included some data, which are not necessary for computing safety performance but relevant in its context, conditional forecasts were made possible. With respect to this, the goal of this paper was to research and evaluate possibilities for both conditional and unconditional forecasts in the context of future risk management. Time-series analysis of the computed safety performance was conducted using ordinary least squares and maximum likelihood estimation. Each of the methodology led to different mathematical model and different predictions. Specific aspects of each methodology were identified.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE Aerospace Conference Proceedings

  • ISBN

    978-1-5386-2014-4

  • ISSN

    1095-323X

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    IEEE Xplore

  • Místo vydání

  • Místo konání akce

    Big Sky

  • Datum konání akce

    3. 3. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku