TRAFFIC ACCIDENT RISK CLASSIFICATION USING NEURAL NETWORKS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F21%3A00353998" target="_blank" >RIV/68407700:21260/21:00353998 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/nnw.2021.31.019" target="_blank" >https://doi.org/10.14311/nnw.2021.31.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/nnw.2021.31.019" target="_blank" >10.14311/nnw.2021.31.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TRAFFIC ACCIDENT RISK CLASSIFICATION USING NEURAL NETWORKS
Popis výsledku v původním jazyce
The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic
Název v anglickém jazyce
TRAFFIC ACCIDENT RISK CLASSIFICATION USING NEURAL NETWORKS
Popis výsledku anglicky
The article deals with the current issue of traffic accident risk classification in urban area. In connection with the increase in traffic in the Czech Republic, a higher probability of risks of traffic excesses can be expected in the future. If there is a traffic excess in the city, the aim is to propose a meaningful traffic management solution to minimize the social losses. The main needs are the early identification and classification of the cause of the traffic excess, finding a suitable alternative solution, quick application of that solution, and the rapid ability to resume operations in the area of congestion. Traffic prediction is one of the tools for the early identification of traffic excess. The article describes extensive research focused on the classification and prediction of the output variable of accident risk based on own programmed neural networks. The research outputs will be subsequently used for the creation of a traffic application for a selected urban area in the Czech Republic
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
<a href="/cs/project/TJ01000183" target="_blank" >TJ01000183: Predikce dopravních excesů využívající neuronové sítě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
2336-4335
Svazek periodika
31
Číslo periodika v rámci svazku
05/21
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
343-353
Kód UT WoS článku
000739166400003
EID výsledku v databázi Scopus
2-s2.0-85123348014