Smart application for traffic excess prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F20%3A00341858" target="_blank" >RIV/68407700:21260/20:00341858 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/SCSP49987.2020.9133935" target="_blank" >https://doi.org/10.1109/SCSP49987.2020.9133935</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCSP49987.2020.9133935" target="_blank" >10.1109/SCSP49987.2020.9133935</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Smart application for traffic excess prediction
Popis výsledku v původním jazyce
The prediction of traffic excesses (traffic congestions and traffic accidents) is become a very important topic for many cities and regions. The number of cars in cities and the total traffic volumes in cities are increasing over time, and solutions will be needed to eliminate traffic accidents and prevent secondary excesses. This will ideally lead to time savings for transport users and, above all, to an increase in the safety, fluidity and environmental performance of the transport itself. The article deals with a research activity that aims to develop a separate module in the form of a traffic application that will be able to predict traffic excesses. The neural networks were the main tool for the development of traffic applications for prediction, namely multilayer neural networks with activation function sigmoidou. With regard to the focus of the conference Smart City, the article does not focus on extensive development and testing of neural network, but primarily on the description of the functionalities of the result, including a critical commentary on the problems of the current state of the application. The transport application is developed in collaboration with the scientific and commercial spheres and its future integration into the management platform for smart city management is expected.
Název v anglickém jazyce
Smart application for traffic excess prediction
Popis výsledku anglicky
The prediction of traffic excesses (traffic congestions and traffic accidents) is become a very important topic for many cities and regions. The number of cars in cities and the total traffic volumes in cities are increasing over time, and solutions will be needed to eliminate traffic accidents and prevent secondary excesses. This will ideally lead to time savings for transport users and, above all, to an increase in the safety, fluidity and environmental performance of the transport itself. The article deals with a research activity that aims to develop a separate module in the form of a traffic application that will be able to predict traffic excesses. The neural networks were the main tool for the development of traffic applications for prediction, namely multilayer neural networks with activation function sigmoidou. With regard to the focus of the conference Smart City, the article does not focus on extensive development and testing of neural network, but primarily on the description of the functionalities of the result, including a critical commentary on the problems of the current state of the application. The transport application is developed in collaboration with the scientific and commercial spheres and its future integration into the management platform for smart city management is expected.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/TJ01000183" target="_blank" >TJ01000183: Predikce dopravních excesů využívající neuronové sítě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 Smart City Symposium Prague
ISBN
978-1-7281-6821-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE Press
Místo vydání
New York
Místo konání akce
Prague
Datum konání akce
25. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000590471100025