Design exploration of additively manufactured chiral auxetic structure using explainable machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00379364" target="_blank" >RIV/68407700:21260/23:00379364 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.matdes.2023.112128" target="_blank" >https://doi.org/10.1016/j.matdes.2023.112128</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matdes.2023.112128" target="_blank" >10.1016/j.matdes.2023.112128</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design exploration of additively manufactured chiral auxetic structure using explainable machine learning
Popis výsledku v původním jazyce
A design exploration of hexachiral structures using explainable machine learning (ML) is performed in this work. The hexachiral structures are fabricated using resin via vat photopolymerization (VPP). The ML model is used to build the function that explains the association between Poisson’s ratio and the hexachiral design parameters. The data set for ML model construction is first collected by using the Halton sequence and simulated using the finite element method (FEM). To validate the data set, the results obtained from the FEM simulation are compared with those obtained from the compression test. The Gaussian Process Regression (GPR) models for Poisson’s ratio and porosity are constructed to extract important design insight. A Global Sensitivity Analysis (GSA) and Shapley Additive Explanations (SHAP) are used to analyze the sensitivity of the porosity and Poisson’s ratio to the hexachiral design parameters. GSA result shows that the strut’s thickness is the most decisive parameter that affects the Poisson’s ratio. The application of SHAP also reveals that the relationship between the strut thickness and Poisson’s ratio is nonlinear. Finally, the minimum Poisson’s ratio value is achieved by design with minimum strut thickness, minimum node radius, and maximum strut length.
Název v anglickém jazyce
Design exploration of additively manufactured chiral auxetic structure using explainable machine learning
Popis výsledku anglicky
A design exploration of hexachiral structures using explainable machine learning (ML) is performed in this work. The hexachiral structures are fabricated using resin via vat photopolymerization (VPP). The ML model is used to build the function that explains the association between Poisson’s ratio and the hexachiral design parameters. The data set for ML model construction is first collected by using the Halton sequence and simulated using the finite element method (FEM). To validate the data set, the results obtained from the FEM simulation are compared with those obtained from the compression test. The Gaussian Process Regression (GPR) models for Poisson’s ratio and porosity are constructed to extract important design insight. A Global Sensitivity Analysis (GSA) and Shapley Additive Explanations (SHAP) are used to analyze the sensitivity of the porosity and Poisson’s ratio to the hexachiral design parameters. GSA result shows that the strut’s thickness is the most decisive parameter that affects the Poisson’s ratio. The application of SHAP also reveals that the relationship between the strut thickness and Poisson’s ratio is nonlinear. Finally, the minimum Poisson’s ratio value is achieved by design with minimum strut thickness, minimum node radius, and maximum strut length.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Inženýrské aplikace fyziky mikrosvěta</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials & Design
ISSN
0264-1275
e-ISSN
1873-4197
Svazek periodika
232
Číslo periodika v rámci svazku
08
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
001147650600001
EID výsledku v databázi Scopus
2-s2.0-85164717707