Baseline Travel Demand for Digital Twins: Exploring Offline OD Estimation Methods for Drivers, Cyclists, and Pedestrians
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00379138" target="_blank" >RIV/68407700:21260/24:00379138 - isvavai.cz</a>
Výsledek na webu
<a href="https://aetransport.org/past-etc-papers/conference-papers-2024?abstractId=8449&state=b" target="_blank" >https://aetransport.org/past-etc-papers/conference-papers-2024?abstractId=8449&state=b</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Baseline Travel Demand for Digital Twins: Exploring Offline OD Estimation Methods for Drivers, Cyclists, and Pedestrians
Popis výsledku v původním jazyce
Understanding travel demand patterns is crucial for effective traffic management, policy-making, and transportation evaluations. Digital twins have emerged as a significant tool in tackling this challenge, where accurate traffic simulation outcomes depend on high-quality data. Essential to most transportation analysis is the knowledge of road users’ origin and destination (OD), enabling route planning, traffic pattern assessment, and system optimization. This information is typically represented in an Origin-Destination (OD) matrix. However, direct observation of every traveler’s origins and destinations is impractical, necessitating the estimation of time-dependent OD flows from available data — a persistent challenge in the field. Direct methods like measurements, interviews, or surveys are often too costly and challenging to implement. Instead, aggregation methods using traffic counts and other data sources offer reasonable estimates. This paper reviews several approaches for estimating OD matrices for vehicles, bicycles, and pedestrians. This review considers various data sources, methodologies, and preprocessing techniques tailored to each mode of transportation. Subsequently, we propose an integrated framework for OD estimation across these modes, factoring in the unique travel demand influencers and available data for each. We acknowledge practical constraints and provide a meaningful contribution to demand modeling that serves as a baseline for digital twins
Název v anglickém jazyce
Baseline Travel Demand for Digital Twins: Exploring Offline OD Estimation Methods for Drivers, Cyclists, and Pedestrians
Popis výsledku anglicky
Understanding travel demand patterns is crucial for effective traffic management, policy-making, and transportation evaluations. Digital twins have emerged as a significant tool in tackling this challenge, where accurate traffic simulation outcomes depend on high-quality data. Essential to most transportation analysis is the knowledge of road users’ origin and destination (OD), enabling route planning, traffic pattern assessment, and system optimization. This information is typically represented in an Origin-Destination (OD) matrix. However, direct observation of every traveler’s origins and destinations is impractical, necessitating the estimation of time-dependent OD flows from available data — a persistent challenge in the field. Direct methods like measurements, interviews, or surveys are often too costly and challenging to implement. Instead, aggregation methods using traffic counts and other data sources offer reasonable estimates. This paper reviews several approaches for estimating OD matrices for vehicles, bicycles, and pedestrians. This review considers various data sources, methodologies, and preprocessing techniques tailored to each mode of transportation. Subsequently, we propose an integrated framework for OD estimation across these modes, factoring in the unique travel demand influencers and available data for each. We acknowledge practical constraints and provide a meaningful contribution to demand modeling that serves as a baseline for digital twins
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ETC Conference Papers 2024
ISBN
—
ISSN
2313-1853
e-ISSN
2313-1853
Počet stran výsledku
32
Strana od-do
—
Název nakladatele
Association for European Transport
Místo vydání
—
Místo konání akce
Antwerp
Datum konání akce
18. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—