Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recurrence in coined quantum walks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F09%3A00157723" target="_blank" >RIV/68407700:21340/09:00157723 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recurrence in coined quantum walks

  • Popis výsledku v původním jazyce

    Recurrence of quantum walks on lattices can be characterized by the generalized Polya number. Its value reflects the difference between a classical and a quantum system. The dimension of the lattice is not a unique parameter in the quantum case; both thecoin operator and the initial quantum state of the coin influence the recurrence in a nontrivial way. In addition, the definition of the Polya number involves measurement of the system. Depending on how measurement is included in the definition, the recurrence properties vary. We show that in the limiting case of frequent, strong measurements, one can approach the classical dynamics. Comparing various cases, we have found numerical indication that our previous definition of the Polya number provides anupper limit.

  • Název v anglickém jazyce

    Recurrence in coined quantum walks

  • Popis výsledku anglicky

    Recurrence of quantum walks on lattices can be characterized by the generalized Polya number. Its value reflects the difference between a classical and a quantum system. The dimension of the lattice is not a unique parameter in the quantum case; both thecoin operator and the initial quantum state of the coin influence the recurrence in a nontrivial way. In addition, the definition of the Polya number involves measurement of the system. Depending on how measurement is included in the definition, the recurrence properties vary. We show that in the limiting case of frequent, strong measurements, one can approach the classical dynamics. Comparing various cases, we have found numerical indication that our previous definition of the Polya number provides anupper limit.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LC06002" target="_blank" >LC06002: Dopplerův ústav pro matematickou fyziku a aplikovanou matematiku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physica Scripta

  • ISSN

    0031-8949

  • e-ISSN

  • Svazek periodika

    T135

  • Číslo periodika v rámci svazku

  • Stát vydavatele periodika

    SE - Švédské království

  • Počet stran výsledku

    3

  • Strana od-do

  • Kód UT WoS článku

    000269768300057

  • EID výsledku v databázi Scopus