Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Clustering via the Distribution Mixtures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00176166" target="_blank" >RIV/68407700:21340/10:00176166 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Clustering via the Distribution Mixtures

  • Popis výsledku v původním jazyce

    The finite distribution mixtures present a wide class of probability distributions. Apart from the obvious applications, the mixtures are successfully applied in the model based clustering. If we constraint the members of the mixture to arise from one specific family or type of parametric distributions, each cluster would refer to one component of the mixture. The membership of the observed sample to a cluster is given simply as the maximum probability on the components of the mixture, i.e. by the Mahalanobis distance, and weighted by the weights of the mixture. This approach is feasible even for overlapping clusters and strongly uneven numbers of the members of the clusters, where standard methods of cluster analysis fall short. We focus on the problem of fitting the mixture to observed sample using the maximum likelihood approach and the EM algorithm, as well as the assessment of the optimal number of components.

  • Název v anglickém jazyce

    Clustering via the Distribution Mixtures

  • Popis výsledku anglicky

    The finite distribution mixtures present a wide class of probability distributions. Apart from the obvious applications, the mixtures are successfully applied in the model based clustering. If we constraint the members of the mixture to arise from one specific family or type of parametric distributions, each cluster would refer to one component of the mixture. The membership of the observed sample to a cluster is given simply as the maximum probability on the components of the mixture, i.e. by the Mahalanobis distance, and weighted by the weights of the mixture. This approach is feasible even for overlapping clusters and strongly uneven numbers of the members of the clusters, where standard methods of cluster analysis fall short. We focus on the problem of fitting the mixture to observed sample using the maximum likelihood approach and the EM algorithm, as well as the assessment of the optimal number of components.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Doktorandské dny 2010

  • ISBN

    978-80-01-04644-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Česká technika - nakladatelství ČVUT

  • Místo vydání

    Praha

  • Místo konání akce

    Praha

  • Datum konání akce

    19. 11. 2010

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku