Information-Divergence Based Methods for Acoustic Micro-Defect Identification in Materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00188005" target="_blank" >RIV/68407700:21340/11:00188005 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information-Divergence Based Methods for Acoustic Micro-Defect Identification in Materials
Popis výsledku v původním jazyce
We deal with the diversity of acoustic emission sources in materials through signal processing methodology for the data sets detected by the measurement device Dakel Xedo 5. Applying the following methods of Fuzzy Clustering (FC), Model-Based Clustering(MBC) and Support Vector Machines (SVM) in combination with empirical nonstandard signal and spectrum attributes, we arrive to the efficient source separation technique. These methods belong to fundamentally different groups. The FC is based on the optimization of an objective function. The MBC consists of two parts - the Agglomerative Clustering and the iterative EM algorithm minimizing likelihood function of the statistical model under consideration. Finally, the SVM searches for optimal separating hyperplanes between clusters. The signals are compared by means of suitable parameters obtained directly from detected signals or their normalized spectral density estimates. We also use distinctive phi-divergence distance measures between
Název v anglickém jazyce
Information-Divergence Based Methods for Acoustic Micro-Defect Identification in Materials
Popis výsledku anglicky
We deal with the diversity of acoustic emission sources in materials through signal processing methodology for the data sets detected by the measurement device Dakel Xedo 5. Applying the following methods of Fuzzy Clustering (FC), Model-Based Clustering(MBC) and Support Vector Machines (SVM) in combination with empirical nonstandard signal and spectrum attributes, we arrive to the efficient source separation technique. These methods belong to fundamentally different groups. The FC is based on the optimization of an objective function. The MBC consists of two parts - the Agglomerative Clustering and the iterative EM algorithm minimizing likelihood function of the statistical model under consideration. Finally, the SVM searches for optimal separating hyperplanes between clusters. The signals are compared by means of suitable parameters obtained directly from detected signals or their normalized spectral density estimates. We also use distinctive phi-divergence distance measures between
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů