Information-divergence based methods for acoustic micro-defect identification in materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00329602" target="_blank" >RIV/68407700:21340/11:00329602 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/11:00187626
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information-divergence based methods for acoustic micro-defect identification in materials
Popis výsledku v původním jazyce
We deal with the diversity of acoustic emission sources in materials through signal processing methodology for the data sets detected by the measurement device Dakel Xedo 5. Applying the following methods of Fuzzy Clustering (FC), Model-Based Clustering (MBC) and Support Vector Machines (SVM) in combination with empirical nonstandard signal and spectrum attributes, we arrive to the efficient source separation technique. These methods belong to fundamentally different groups. The FC is based on the optimization of an objective function. The MBC consists of two parts - the Agglomerat.ive Clustering and the iterative EM algorithm [1] minimizing likelihood function of the statistical model under consideration. Finally, the SVM [2] searches for optimal separating liyperplanes between clusters. The signals are compared by means of suitable parameters obtained directly from detected signals or their normalized spectral density estimates. We also use distinctive (Φ-divergence dista nee measures [3] between signal spectra as the additional attribute for the signal cluster separation. The structure of Φ-divergeuce parameter is given in discrete form by DΦ(S̃ refer, S̃)= ∑ T-1 f=0 S̃(f)Φ (S̃ refer(f)/ S̃(f)), where S̃ refer is a normed reference spectrum from the number m of samples of a given signal type and S̃ stands for the normalized spectrum of individual signals.
Název v anglickém jazyce
Information-divergence based methods for acoustic micro-defect identification in materials
Popis výsledku anglicky
We deal with the diversity of acoustic emission sources in materials through signal processing methodology for the data sets detected by the measurement device Dakel Xedo 5. Applying the following methods of Fuzzy Clustering (FC), Model-Based Clustering (MBC) and Support Vector Machines (SVM) in combination with empirical nonstandard signal and spectrum attributes, we arrive to the efficient source separation technique. These methods belong to fundamentally different groups. The FC is based on the optimization of an objective function. The MBC consists of two parts - the Agglomerat.ive Clustering and the iterative EM algorithm [1] minimizing likelihood function of the statistical model under consideration. Finally, the SVM [2] searches for optimal separating liyperplanes between clusters. The signals are compared by means of suitable parameters obtained directly from detected signals or their normalized spectral density estimates. We also use distinctive (Φ-divergence dista nee measures [3] between signal spectra as the additional attribute for the signal cluster separation. The structure of Φ-divergeuce parameter is given in discrete form by DΦ(S̃ refer, S̃)= ∑ T-1 f=0 S̃(f)Φ (S̃ refer(f)/ S̃(f)), where S̃ refer is a normed reference spectrum from the number m of samples of a given signal type and S̃ stands for the normalized spectrum of individual signals.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Forum Acusticum 2011
ISBN
978-84-694-1520-7
ISSN
—
e-ISSN
2221-3767
Počet stran výsledku
6
Strana od-do
991-996
Název nakladatele
European Acoustics Association
Místo vydání
Madrid
Místo konání akce
AALBORG
Datum konání akce
26. 6. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—